分塊矩陣

分塊矩陣

分塊矩陣是高等代數中的一個重要內容,是處理階數較高的矩陣時常採用的技巧,也是數學在多領域的研究工具。對矩陣進行適當分塊,可使高階矩陣的運算可以轉化為低階矩陣的運算,同時也使原矩陣的結構顯得簡單而清晰,從而能夠大大簡化運算步驟,或給矩陣的理論推導帶來方便。有不少數學問題利用分塊矩陣來處理或證明,將顯得簡潔、明快。

分塊矩陣是一個矩陣, 它是把矩陣分別按照橫豎分割成一些小的子矩陣 。 然後把每個小矩陣看成一個元素。

基本介紹

  • 中文名:分塊矩陣
  • 外文名:partitioned matrix
  • 類別矩陣
  • 學科:高等數學
  • 特殊:分塊對角矩陣,分塊上三角矩陣
  • 相關:求解線性方程組
定義,運算規則,加法,數乘,乘法,轉置,特殊分塊矩陣,分塊對角矩陣,分塊上下三角矩陣,

定義

將一個矩陣用若干條橫線和豎線分成許多個小矩陣,將每個小矩陣稱為這個矩陣的子塊,以子塊為元素的形式上的矩陣稱為分塊矩陣。
例如,
其中E1E3分別表示1階、3階單位矩陣,O表示1×3的零矩陣,而
同一個矩陣可以有多種不同的分塊方法,從而形成不同的分塊矩陣。例如上例的矩陣也可分成也可分成
其中E2表示2階單位矩陣,O表示2階零矩陣,而

運算規則

加法

,用同樣的方法對AB進行分塊,即
為同型矩陣,則

數乘

k是任意數,定義分塊矩陣
k的數乘為

乘法

A
階矩陣,B是
階矩陣,即A的列數=B的行數,分塊
,即A的列分塊法=B的行分塊法。
則A與B的乘積
階分塊矩陣,
其中,

轉置

設矩陣
階分塊矩陣,
,則

特殊分塊矩陣

分塊對角矩陣

An階方陣,若A的分塊矩陣在非主對角線上的子塊皆為零矩陣,且在主對角線上的子塊都是方陣,即
其中O表示零矩陣,
都是方陣,那么稱A為分塊對角矩陣。
性質:
②若
,則A可逆,且
③同結構的準對角矩陣的和、差、積、數乘及逆仍是準對角矩陣,且運算表現為對應子塊的運算。

分塊上下三角矩陣

對方陣進行分塊後,主對角線上的子塊矩陣都是方陣,主對角線以下(以上)的子塊矩陣都是零矩陣,即
稱為分塊上(下)三角形矩陣。
性質
①同結構的分塊上(下)三角形矩陣的和(差)、積(若乘法運算能進行)仍是同結構的分塊矩陣。
② 數乘分塊上(下)三角形矩陣也是分塊上(下)三角形矩陣。
③ 分塊上(下)三角形矩陣可逆的充分必要條件是的主對角線子塊都可逆;若可逆,則的逆陣也是分塊上(下)三角形矩陣。
④ 分塊上(下)三角形矩陣對應的行列式:

相關詞條

熱門詞條

聯絡我們