《代數》是2020年中國科學技術大學出版社出版的圖書。
基本介紹
- 中文名:代數
- 作者:(烏克蘭)伊斯雷爾·蓋爾范德、(俄羅斯)亞歷山大·肖恩
- 出版社:中國科學技術大學出版社
- 出版時間:2020年
- ISBN:9787312048937
《代數》是2020年中國科學技術大學出版社出版的圖書。
代數,是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念和如何建立多項式並找出它們的根。代數...
代數是研究數、數量、關係、結構與代數方程的數學分支,也是數學中最重要的、基礎的分支之一。代數學的歷史悠久,它隨著人類生活的提高,生產技術的進步,科學和數學本身的需要而產生和發展。在這個過程中,代數學的研究對象和研究方法發生了重大的變化。代數學可分為初等代數學和抽象代數學兩部分。初等代數學是更古...
代數 代數是集合論的一個概念。定義 代數是在有限的交與補下閉的非空集類。性質 代數為包含單位元X的環。
代數,是抽象代數中的一種代數結構,定義環乘法為,單位元為η(1),則R上代數A為環。環定義 交換麼環R上的代數A是一個交換麼環,且附有一個環同態 。模定義 麼環R上的代數為R上雙模A,附有一對模同態 與 ,並滿足結合律 以及單位律 。性質 定義環乘法為ab=μ(a⮿b),單位元為η(1),則R上代數...
高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學裡開設的高等代數,一般包括兩部分:線性代數、多項式代數。簡介 初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數...
代數系統(algebra system)是建立在集合上的一種運算系統。它是用運算構造數學系統的一種方法,因此稱代數系統。而運算則是一種函式,因此也是一種關係。因此我們說,代數系統是用系統觀點研究運算的一種數學,它是關係研究的另一種方法。 代數系統是初等代數和高等代數的一種擴展與抽象的系統。在代數系統中有四個重要概...
代數數論,是數論的一個重要分支。它以代數整數,或者代數數域為研究對象,不少整數問題的解決要藉助於或者歸結為代數整數的研究。因之,代數數論也是整數研究的一個自然的發展。代數數論的發展也推動了代數學的發展。引申代數數的話題,關於代數整數的研究,主要的研究目標是為了更一般地解決不定方程的問題,而為了達...
代數式,是由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子,或含有字母的數學表達式稱為代數式。例如:ax+2b,-2/3,b^2/26,√a+√2等。簡介 代數式是一種常見的解析式,對變數字母僅限於有限次代數運算(加、減、乘、除、乘方、開方)的解析式稱為代數式,例如 等都...
代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的多項式的代數運算理論和方法的數學分支學科。“代數”作為一個數學專有名詞、代表一門數學分支在我國正式使用,最早是在1859年。起源與發展 “代數”作為一個數學專有名詞、代表一門數學分支在中國正式使用,最早是在1859年...
代數數是代數與數論中的重要概念,指任何整係數多項式的復根。所有代數數的集合構成一個域,稱為代數數域。不是代數數的數稱為超越數,例如:圓周率 π、自然對數的底數 e。定義 形如 (,n為正整數)的整係數(為整數,)多項式方程的根x則叫做“代數數”。代數數可以定義為“有理係數多項式的復根”或“整係數...
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。法國數學家伽羅瓦〔1811-1832〕在1832年運用「群...
代數幾何,是現代數學的一個重要分支學科。它的基本研究對象是在任意維數的(仿射或射影)空間中,由若干個代數方程的公共零點所構成的集合的幾何特性。這樣的集合通常叫作代數簇,而這些方程叫作這個代數簇的定義方程組。代數簇是由空間坐標的一個或多個代數方程所確定的點的軌跡。例如,三維空間中的代數簇就是代...
代數簇,是代數幾何里最基本的研究對象。代數幾何學上,代數簇是多項式集合的公共零點解的集合。代數簇是經典(某種程度上也是現代)代數幾何的中心研究對象。 術語簇(variety)取自拉丁語族中詞源(cognate of word)的概念,有基於“同源”而“變形”之意。歷史上,代數基本定理建立了代數和幾何之間的一個聯繫,它...
在抽象代數里,代數結構(algebraic structure)是指裝備了一個及以上的運算(最一般地,可以允許有無窮多個運算)的非空集合。一般研究的代數結構有群、環、域、格、模、域代數和向量空間等等。在數學中,更具體地說,在抽象代數中,代數結構是一個集合(稱為載體集或底層集合),它在它上定義了一個或多個滿足...
代數是數學的一個分支。傳統的代數用有字元 (變數) 的表達式進行算術運算,字元代表未知數或未定數。如果不包括除法 (用整數除除外),則每一個表達式都是一個含有理係數的多項式。代數方法使問題的求解簡化為符號表達式的操作,已滲入數學的各分支。導子是從數學分析中移植於代數系統,用於討論一般可分擴張的一種...
代數方程,即由多項式組成的方程。有時也泛指由未知數的代數式所組成的方程,包括整式方程、分式方程和根式方程。例如:5x+2=7,x=1等。 代數,把algebra翻譯成代數,就是用字母代替數的意思,繼而推廣。隨著數學的發展,內在涵義又推廣為用群結構或各種結構來代替科學現象中的各種關係。也就是說“代數”本質是個...
代數群(Algebraic group)理論是群論與代數幾何學結合的產物,可以看成李群理論的推廣或者同李群理論平行的一個群論分支。代數群及其表示理論與域論、多重線性代數、交換環論、代數幾何、李群、李代數、有限單群理論以及群表示理論等數學分支都有十分密切的聯繫,是近年來代數學的一個相當活躍的分支。預備知識 群 群...
C*-代數(C*-algebra),讀作“C-星-代數(C-star-algebra)”,其為一個滿足伴隨(adjoint)、對合(involution)性質的巴拿赫代數(Banach algebra),是泛函分析的一個研究對象。定性刻畫補充 定性刻畫的兩點補充說明 伴隨(adjoint):在泛函分析中,希爾伯特空間中的每個線性運算元有一個相應的伴隨運算元。運算元的...
代數基本定理:任何復係數一元n次多項式 方程在複數域上至少有一根(n≥1),由此推出,n次復係數多項式方程在複數域內有且只有n個根(重根按重數計算)。代數基本定理在代數乃至整個數學中起著基礎作用。 據說,關於代數學基本定理的證明,現有200多種證法。簡介 代數學基本定理說明,任何復係數一元n次多項式方程在...
代數幾何研究就是平面解析幾何與三維空間解析幾何的推廣。大致說來,它是研究n維仿射空間或n維射影空間中多項式方程組的零點集合構成的幾何對象之特性及其上的三大結構:代數結構,拓撲結構和序結構。此三大結構是Bourbaki學派(布爾巴基)所提出,用來統攝結構數學,數學中凡是具有結構特徵的板塊,均由這三大母結構及其混合...
代數表示論是二十世紀七十年代初興起的代數學的一個新的分支。它的基本內容是研究一個Artin代數上的模範疇,用模論的方法研究一個代數的結構。代數表示論研究一個給定的Artin代數是有限型還是無限型。若是有限型,確定其全體不可分解模;若是無限型,給出模的分布情況。簡介 代數表示論是二十世紀七十年代初興起的代...
在數學中,某個集合X上的σ代數(σ-algebra)又叫σ域 ,是X的所有子集的集合(也就是冪集)的一個子集。這個子集滿足對於可數個集合的並集運算和補集運算的封閉性(因此對於交集運算也是封閉的)。σ代數可以用來嚴格地定義所謂的“可測集”,是測度論的基礎概念之一。簡介 在數學中,某個集合X上的σ代數又叫...
《代數(原書第2版)》是機械工業出版社出版的圖書,作者是Michael Artin。內容簡介 《華章數學譯叢:代數(原書第2版)》由著名代數學家與代數幾何學家Michael Artin所著,是作者在代數領域數十年的智慧和經驗的結晶。書中既介紹了矩陣運算、群、向量空間、線性變換、對稱等較為基本的內容,又介紹了環、模型、...
《代數》是2019年世界圖書出版公司出版的圖書,作者是(美)t.w.亨格福德。主要講述了在一些問題的處理上有其獨到之處,如Sylow定理的證明、伽羅瓦理論的處理、可分域的擴張、環的結構理論等。書中有大量的練習和精心挑選的例子。內容簡介 本書是Springer《數學研究生教材》第73卷,初版於1974年,30年來一直是美國...
《代數--第二冊(上)(初二第一學期用)》是1999年北京教育出版社、奧林匹克出版社出版的圖書。作品目錄 第八章 因式分解 8.1提公因式法 8.2運用公式法 8.3分組分解法 8.4十字相乘法 第八章綜合練習(一)第八章綜合練習 第八章綜合練習(二)第九章 分式 9.1分式 9.2分式的基本性質 9.3分式的乘除...
代數對應(algebraic correspondence)是代數簇間的一種映射。設X和Y是兩個代數簇,X×Y的一個扎里斯基閉子集Z就給出了X與Y間的一個代數對應。概念 代數對應(algebraic correspondence)是代數簇間的一種映射。設X和Y是兩個代數簇,X×Y的一個扎里斯基閉子集Z就給出了X與Y間的一個代數對應。對於p∈X,q∈Y,...
《代數--第一冊(上)(初一第一學期用)》是1999年北京教育出版社/奧林匹克出版社出版的圖書。內容簡介 本套叢書以全日制中學教學大綱為依據,根據九年義務教育三年制國中 教科書(人教版)的內容及素質教育的要求編寫。全書按年級、學期分冊,突出了以下特點:第一、嚴格與教學進度同步,供學生與課本配套使用;第...
《代數(下冊)》是1937年中圖文庫出版的圖書。內容簡介 共28章,介紹整式四則、分式、比及比例、變數法、復素數、一元二次方程式、無盡連級數等代數學知識,末附英漢名詞索引。原出版社:商務印書館發行 圖書目錄 第十一章 分式方程式 §103.引論 §104.怎樣解分式方程式 習題九十一 §105.用化整法往往得...
《代數基本概念》是高等教育出版社出版的圖書,作者是I.R.Shafarevich(I.R.沙法列維奇)內容簡介 《代數基本概念》是沙法列維奇的經典名著之一,目的是對代數學、它的基本概念和主要分支提供一個一般性的全面概述,論述代數學及其在現代數學和其他科學中的地位。 《代數基本概念》高度原創且內容充實,涵蓋了代數中...
初等代數(elementary algebra)是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的代數式的代數運算理論和方法的數學分支學科。初等代數(elementary algebra)是古老的算術的推廣和發展。在古代,當算術里積累了大量的關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,...