定義式,函式關係,誘導公式,基本公式,和差角公式,和差化積公式,積化和差公式,倍角公式,半角公式,萬能公式,輔助角公式,其它公式,正弦定理,餘弦定理,降冪公式,冪級數,泰勒展開式,萬能公式,傅立葉級數,
定義式
| 銳角三角函式 | 任意角三角函式 |
---|
圖形 | | |
| | |
| | |
| | |
| | |
| | |
| | |
函式關係
誘導公式
公式一:設
為任意角,終邊相同的角的同一三角函式的值相等:
記背訣竅:奇變偶不變,符號看象限.即形如(2k+1)90°±α,則函式名稱變為余名函式,正弦變餘弦,餘弦變正弦,正切變餘切,餘切變正切。形如2k×90°±α,則函式名稱不變。
誘導公式口訣“奇變偶不變,符號看象限”意義:
k×π/2±a(k∈z)的三角函式值
(1)當k為偶數時,等於α的同名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號;
(2)當k為奇數時,等於α的異名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號。
記憶方法一:奇變偶不變,符號看象限:
記憶方法二:無論α是多大的角,都將α看成銳角.
以誘導公式二為例:
若將α看成銳角(終邊在第一象限),則π+α是第三象限的角(終邊在第三象限),正弦函式的函式值在第三象限是負值,餘弦函式的函式值在第三象限是負值,正切函式的函式值在第三象限是正值。這樣,就得到了誘導公式二。
以誘導公式四為例:
若將α看成銳角(終邊在第一象限),則π-α是第二象限的角(終邊在第二象限),正弦函式的三角函式值在第二象限是正值,餘弦函式的三角函式值在第二象限是負值,正切函式的三角函式值在第二象限是負值。這樣,就得到了誘導公式四。
誘導公式的套用:
運用誘導公式轉化三角函式的一般步驟:
特別提醒:三角函式化簡與求值時需要的知識儲備:①熟記特殊角的三角函式值;②注意誘導公式的靈活運用;③三角函式化簡的要求是項數要最少,次數要最低,函式名最少,分母能最簡,易求值最好。
基本公式
和差角公式
二角和差公式
證明如圖:負號的情況只需要用-β代替β即可.cot(α+β)推導只需把角α對邊設為1,過程與tan(α+β)相同.
三角和公式
和差化積公式
口訣:正加正,正在前,余加余,余並肩,正減正,余在前,余減余,負正弦.
積化和差公式
倍角公式
二倍角公式
三倍角公式
證明:
sin3a
=sin(a+2a)
=sin2a·cosa+cos2a·sina
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-cos2a)cosa
=4cos3a-3cosa
sin3a
=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina×2sin[(60+a)/2]cos[(60°-a)/2]×2sin[(60°-a)/2]cos[60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a
=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa×2cos[(a+30°)/2]cos[(a-30°)/2]×{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得:
tan3a=tana·tan(60°-a)·tan(60°+a)
四倍角公式
sin4a=-4×[cosa·sina·(2×sin2a-1)]
cos4a=8cos4a-8cos2a+1
tan4a=(4tana-4tan3a)/(1-6tan2a+tan4a)
五倍角公式
n倍角公式
上式用於求n倍角的三角函式時,可變形為:
所以
其中,Re表示取實數部分,Im表示取虛數部分.而
所以
半角公式
萬能公式
輔助角公式
證明:
故有:
其它公式
正弦定理
在任意△
ABC中,角
A、
B、
C所對的邊長分別為
a、
b、
c,三角形
外接圓的半徑為
R.則有:
正弦定理變形可得:
餘弦定理
對於如圖所示的邊長為a、b、c而相應角為α、β、γ的△ABC,有:
也可表示為:
降冪公式
sin2α=[1-cos(2α)]/2
cos2α=[1+cos(2α)]/2
tan2α=[1-cos(2α)]/[1+cos(2α)]
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它們的各項都是
正整數冪的
冪函式, 其中c
0,c
1,c
2,...c
n...及a都是常數, 這種級數稱為冪級數。
泰勒展開式
泰勒展開式又叫冪級數展開法
實用冪級數:
ex= 1+x+x2/2!+x3/3!+…+xn/n!+…,x∈R
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)…+(2k+1)!!×x2k+1/(2k!!×(2k+1))+…, x∈(-1,1)(!!表示雙階乘)
arccos x = π/2 -[x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)……], x∈(-1,1)
arctan x = x - x3/3 + x/5 -…, x∈(-∞,1)
sinh x = x+x3/3!+x/5!+…+x2k-1/(2k-1)!+…, x∈R
cosh x = 1+x2/2!+x/4!+…+x2k/(2k)!+…, x∈R
arcsinh x =x - x3/(2×3) + (1×3)x/(2×4×5) -(1×3×5)x/(2×4×6×7)…, x∈(-1,1)
arctanh x = x + x3/3 + x/5 + …, x∈(-1,1)
在解初等三角函式時,只需記住公式便可輕鬆作答,在競賽中,往往會用到與圖像結合的方法求三角函式值、三角函式
不等式、面積等等。
萬能公式
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
傅立葉級數
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx