1822年,傅立葉終於出版了專著《熱的解析理論》(Theorieanalytique de la Chaleur ,Didot ,Paris,1822)。這部經典著作將歐拉、伯努利等人在一些特殊情形下套用的三角級數方法發展成內容豐富的一般理論,三角級數後來就以傅立葉的名字命名。傅立葉套用三角級數求解熱傳導方程,為了處理無窮區域的熱傳導問題又導出了當前所稱的“傅立葉積分”,這一切都極大地推動了偏微分方程邊值問題的研究。然而傅立葉的工作意義遠不止此,它迫使人們對函式概念作修正、推廣,特別是引起了對不連續函式的探討;三角級數收斂性問題更刺激了集合論的誕生。因此,《熱的解析理論》影響了整個19世紀分析嚴格化的進程。傅立葉1822年成為科學院終身秘書。年輕時的傅立葉的畫像。
1822年傅立葉提出了他在熱流上的作品:熱的解析理論(Théorie analytique de la chaleur),其中他根據他所推理的牛頓冷卻定律,即兩相鄰流動的熱分子和他們非常小的溫度差成正比。這本書被Freeman翻譯與在編輯上'更正'成英文後56年(1878)。書中還編輯了許多在編輯上的更正,並在1888年由達布在法國重新出版。 在這項工作中有三個重要貢獻,一個是純粹的數學,兩個物理本質。在數學中,傅立葉聲稱的函式中,任何一個變數,不論是否連續或不連續,可擴大成一系列的正弦倍數的變數。雖然這個結果是不正確的,但在傅立葉的觀察中,一些不連續函式的無窮級數的總和是一個突破。約瑟夫路易斯拉格朗曾給予了這個(假的)定理特別的例子,並暗示這是一般的方法,但他沒有繼續這個主題。約翰狄利克雷是第一個在具有限制條件下給予一個滿意的示範。這本書的一個物理貢獻是二維的概念同質性方程;即一個方程如果任何一方的平等,只能在正式比賽的尺寸正確的。傅立葉還開發了三維分析,是代表物理單位的方法,如速度和加速度,其基本層面的質量,時間和長度,以獲得他們之間的關係。其他物理的貢獻是傅立葉的建議,關於熱量的導電擴散的偏微分方程,也就是現在傳授給每一個學生的數學物理。