約束補償問題

約束補償問題

約束滿足問題(CSPs)是種數學的問題,其定義為一組對象(object),而這些對象需要滿足一些限制或條件。 CSPs將其問題中的單元(entities)表示成在變數上有限條件的一組同質(homogeneous)的集合, 這類問題透過約束補償方法來解決。CSPs是人工智慧運籌學 的熱門主題,因為它們公式中的規律,提供了共同基礎來分析、解決很多看似不相關的問題。 CSPs通常呈現高複雜性, 需要同時透過啟發式搜尋聯合搜尋 的方法,來在合理的時間內解決問題。 布爾可滿足性問題 (SAT), 可滿足性的理論 (SMT)和回答集程式設計 (ASP) 可以算是某種程度上的約束滿足問題。

基本介紹

  • 中文名:約束補償問題
  • 外文名:Constraint compensation problem
  • 縮寫:CSPs
  • 本質:定義對象需要滿足一些限制或條件
簡介,正式的定義,CSPs的解決方法,CSPs的理論方面,判定問題,功能問題,CSPs的變型,動態CSPs,靈活的CSPs,

簡介

以下舉例為幾個簡單的約束滿足問題:
這些是提供的ASP,Boolean SAT和SMT教學課程的人通常會教的。在一般情況下,約束問題會是更 困難,而且可能難以用這些簡單系統的例子來表達。
現實生活中的例子包含自動規劃資源配置

正式的定義

正式來說,約束滿足問題定義為一個三元組
,其中
是變數的集合,
是各個變數的定義域集合,而
是限制條件的集合。
每個變數
可以在非空的定義域
中取出。每個限制條件(Constraint)
依序對應一對
,其中
-tuple的變數,
則是在定義域
中,其對應到的子集合上得到的
-ary 維的關係。 變數的評估(evaluation)是一個函式,其從變數的子集合映射到一組特定的集合,集合內為定義域的子集合所對應到的值,也就是
如果
,則此評估(evaluation)
滿足條件限制
如果一個評估不違反任何的條件限制,我們說這個評估是無矛盾的(consistent)。 如果一個評估包含了所有的變數,我們說這個評估是完備的(complete)。 如果一個評估無矛盾而且完備的,我們說這個評估是一個解(solution),這樣的評估就會用來解決CSP。

CSPs的解決方法

定義域有限的約束滿足問題通常利用搜尋方法來解決。最常用的技術是回溯法(backtracking)、約束傳遞constraint propagation,以及局部搜尋local search的改良。
回溯法是一種遞歸算法,它保持部分變數的賦值。一開始,所有的變數都還沒被賦值。在每一個步驟中,先選取一個變數,並且將所有可能的值依次賦予該變數。對於每一個值,在限制條件下的局部賦值的無矛盾性(consistency)都進行檢查。在匹配無矛盾(consistency)的情況下,就會遞歸地往下調用。當所有的值都試過,算法則回溯上層。在這個基本回溯算法中,無矛盾性(consistency)被定義為滿足所有的條件限制,且這些條件限制的變數已被賦值。若干回溯變數存在。回溯法提高了檢查無矛盾性的效率。回跳法可以使在某些在某些情況中,透過回溯”一個以上的變數“,來省去部分的搜尋。約束學習則藉由減少新的條件限制,來避免部分的搜尋。可預見性也常常在回溯法中套用,用來去預期選擇一個變數或值的影響,因此常常用來預先判定一個子問題什麼時候滿足或不滿足。約束傳遞(Constraint propagation)技術是用來修飾一個CSP的方法。更精確地說,是一種方法,用來增強一種形式的局部一致性,是一種條件牽連到一組變數或條件限制的一致性。約束傳播套用在各個領域。一來,它把問題轉化為一個等價但通常是最簡單的解決方法。 二來,他可以用來驗證滿足或不滿足於問題。 一般來說他不保證會發生,但是它總是會發生一些形式的約束傳遞(Constraint propagation)或某些種類的問題。 最有名的慣用的局部一致性是弧協調性,超弧一致性,和路徑一致性。 最流行的方法是AC-3約束傳播算法,該算法可以運行弧的一致性。
局部搜尋方法是不完全滿足的算法。人們可能找到解決問題的方法, 但這方法可能令我們失望。其反覆更改變數來改進整個任務,而得以運作。在每一步,要更改少量變數的值,與整體目標數量的增加條件限制以滿足的任務。最小衝突算法是局部搜尋算法和基於特定CSPs原則。在實踐中,局部搜尋似乎工作當這些變化也受隨機選擇。集成搜尋和局部搜尋被開發了,導致混合算法。

CSPs的理論方面

判定問題

CSPs也研究計算複雜性問題和有限模型理論. 一個重要的問題是,是否為每一組的關係、套都可視為CSPs選自只使用關係設定不是在p或NP-完全問題. 如果這樣一個二分法真實可靠, 那么CSPs提供已知的最大的一個NP子集,避免NP-intermediate問題,其存在是證明了Ladner's 理論在這種假定下P ≠ NP.Schaefer's 二分法理論處理所用變數相關時的情況布爾數學運算符, 也就是, 對一個定義域大小為2的。 最近的一個促進dichotomoy二分定理推廣到一個更大的類的事務。

功能問題

相同的情形存在於功能類別之間,FP和#P.通過一般的Ladner's 理論, FP 和#P-complete也存在問題如果 FP ≠ #P。在這種決策下, 一個#CSP問題被定義為一組關係。每個問題需要輸入布爾公式作為輸入,任務是計算數字令人滿意的工作。這可以進一步推廣利用大域大小和附上一個權重,對每一個滿意的賦值和計算這些權值的總和。 眾所周知任何複雜的#CSP權重問題既不是FP 也不是 #P-hard問題。

CSPs的變型

經典的造型約束滿足問題定義了一個靜態模型,呆板的約束。 這個嚴格的模型的缺點是他很難容易的表現問題。基於CSP定義的幾種修改,提出使該模型廣泛適應各種各樣的問題。

動態CSPs

動態CSPs(DCSPs) 是有用的,當原有的問題形式以某種方式改變,通常是由於約束集進化,因為要考慮環境。DCSPs被當做一系列的靜態CSPs, 每一個都是轉變的前一個變數和約束可以添加或刪除限制(放鬆)。信息在初始的配方發現問題可以用來提煉下一個。解決的方法可分為根據信息的方法在轉讓:
  • Oracles: 解決之前發現的序列CSPs作為啟發式方法指導解決當前CSP從零開始。
  • Local repair: 每個CSP計算從解決部分問題之前的修復與Local search。局部搜尋不約束。
  • Constraint recording: 新的約束是定義在每一階段的搜尋代表學習群決策不一致。在這些約束進行了新的CSP問題。

靈活的CSPs

經典的CSPs處理約束很嚴格,意味著強制的(每一解決方案必須滿足所有問題) 並且刻板的(意味著,以至於他們必須被完全滿足,否則他們是完全違反了)。靈活的 CSPs 放寬假設, 部分的放寬限制對不遵循的的也一樣解決問題。 這類似於preference-based planning. 一些類型的靈活 CSPs 包括:
  • MAX-CSP, 在那裡有好些約束允許受侵犯的質量,並通過測量方法多少滿意的約束。
  • 加權 CSP,使每一個MAX-CSP違反約束加權根據預定義的偏好。因此,更重要的是滿足約束的優先考慮。
  • CSP模糊的約束關係,在這種情況下約束滿足是變數的連續函式,從完全滿足到完全不滿足。

相關詞條

熱門詞條

聯絡我們