簡介
圖的m-著色
判定問題——給定無向
連通圖G和m種不同的顏色。用這些顏色為圖G的各
頂點著色,每個頂點著一種顏色,是否有一種著色法使G中任意相鄰的2個頂點著不同顏色?
圖的m-著色
最佳化問題——若一個圖最少需要m種顏色才能使圖中任意相鄰的2個頂點著不同顏色,則稱這個數m為該圖的色數。求一個圖的最小色數m的問題稱為m-著色最佳化問題。
路線著色問題
G是一個有限有向圖並且G的每個頂點的
出度都是k。G的一個同步著色滿足以下兩個條件:
1)G的每個頂點有且只有一條出邊被染成了1到k之間的某種顏色;
2)G的每個頂點都對應一種走法,不管你從哪裡出發,按該走法走,最後都結束在該頂點。
有向圖G存在同步著色的
必要條件是G是
強連通而且是非周期的。一個有向圖是非周期的是指該圖中包含的所有環的長度沒有大於1的
公約數。路線著色定理這兩個條件(強連通和是非周期)也是充分的。也就是說,
有向圖G存在同步著色若且唯若G是強連通而且是非周期的。
道路著色問題(Road Coloring Problem)是圖論中最著名的猜想之一。通俗的說,這個猜想認為,可以繪製一張“萬能地圖”,指導人們到達某一目的地,不管他們原來在什麼位置。這個猜想最近被以色列數學家艾夫拉漢· 特雷特曼(Avraham Trahtman)在2007年9月證明。
特雷特曼在數學上的這一成果極為令人矚目,英國《
獨立報》為此事專門發表了一篇題為“身無分文的移民成了數學
超級明星”的文章,給予了高度的評價。
以色列人也為特雷特曼取得的成就感到無比的驕傲。特拉維夫電視台中斷了正常的節目播放,以第一時間發布了這一重大訊息,連中東其他國家的主流媒體也作了大篇幅的相關報導。
得知特雷特曼解決這一難題的訊息後,多年從事路線著色問題研究的加拿大數學家喬爾·弗里德曼說,“路線著色問題的解決令數學共同體非常興奮。”讀過特雷特曼論文的中國數學家和語言學家
周海中教授認為,特雷特曼的數學知識非常淵博,解題方法十分巧妙,這一謎題得到破解,無疑是數學史上的一個華彩樂章。
算法
點著色問題有簡單的時間複雜度為O(3^n)的算法,即設f(S)表示集合的色數,則
。
算法描述
color[n]存儲n個頂點的著色方案,可以選擇的顏色為1到m。
當t=1時,對當前第t個頂點開始著色:若t>n,則已求得一個解,輸出著色方案即可。否則,依次對頂點t著色1-m, 若t與所有其它相鄰頂點無顏色衝突,則繼續為下一頂點著色;否則,回溯,測試下一顏色。
#include<stdio.h> int color[100];bool ok(int k,int c[][100])//判斷頂點k的著色是否發生衝突{ int i,j; for(i=1;i<k;i++) { if(c[k][i]==1&&color[i]==color[k]) return false; } return true;} void graphcolor(int n,int m,int c[][100]){ int i,k; for(i=1;i<=n;i++) color[i]=0; k=1; while(k>=1) { color[k]=color[k]+1; while(color[k]<=m) if(ok(k,c)) break; else color[k]=color[k]+1;//搜尋下一個顏色 if(color[k]<=m&&k==n) { for(i=1;i<=n;i++) printf("%d",color[i]); printf("\n"); } else if(color[k]<=m&&k<n) k=k+1;//處理下一個頂點 else { color[k]=0; k=k-1;//回溯 } }}void main(){ int i,j,n,m; int c[100][100];//存儲n個頂點的無向圖的數組 printf("輸入頂點數n和著色數m:\n"); scanf("%d%d",&n,&m); printf("輸入無向圖的鄰接矩陣:\n"); for(i=1;i<=n;i++) for(j=1;j<=n;j++) scanf("%d",&c[i][j]); printf("著色所有可能的解:\n"); graphcolor(n,m,c);}
暫存器分配技術
利用相交圖(interference graph)來表示程式變數的生命期是否相交,將暫存器分配給變數的問題,可近似地看成是給相交圖著色:相交圖中,相交的節點不能著同一顏色;每一種顏色對應一個暫存器。Chaitin等人最早提出了基於圖著色的暫存器分配方法其著色思路採用了Kempe的著色方法,即,任意一個鄰居節點數目少於k的節點,都能夠被k著色。判斷一個圖是否能夠被k(k>=3)種顏色著色,即k著色問題,被Karp證明是一個NP-complete問題。
但是,暫存器分配不僅僅是圖著色的問題。當暫存器數目不足以分配某些變數時,就必須將這些變數溢出到記憶體中,該過程成為spill。最小化溢出代價的問題,也是一個NP-complete問題。如果簡化該問題——假設所有溢出代價相等,那么最小化溢出代價的問題,等價於k著色問題,仍然是NP-complete問題。
此外,若兩個變數的生命期僅因為在同一個拷貝指令中而相鄰,那么,通過將這兩個變數分配到同一個暫存器,就可以消除該拷貝指令,成為
coalescing。這個方向的努力在Chaitin的文章以後的1/4個世紀,成為推動暫存器分配的主要動力之一,湧現出了包括aggressive coalescing,conservative coalescing和optimistic coalescing。但是,將兩個變數分配到同一個暫存器,等價於將這兩個變數合併成同一個變數,生命期合併,因而會加劇相交圖的
聚簇現象,降低相交圖的可著色性。Bouchez等人證明了coalescing問題都是NP-complete的。
為降低相交圖的聚簇現象,提高相交圖的可著色性,可通過將變數拷貝給一個臨時變數,並將以後對該變數的使用替換成對該臨時變數的使用,從而將一變數的生命期分解成兩個變數的生命期,稱為live range splitting。顯然,這是一個與coalescing的作用相反的過程。Bouchez等人考慮了該方法的複雜度。
此外,暫存器分配還需要考慮暫存器別名(
aliasing)和預著色(
pre-coloring)的問題。暫存器別名是指,在某些體系結構中,一個暫存器的賦值可能會影響到另外一個暫存器。比如,在x86中,對AX暫存器的賦值,會影響AL和AH暫存器。預著色是指,某些變數必須被分配到特定的暫存器。比如,許多體系結構會採用特定暫存器來
傳遞函式參數。
George和Appel發展了Chaitin的算法,更好地考慮了coalescing過程和
賦值過程,以及各過程之間的
疊代,在基於圖著色的暫存器分配方法中具有廣泛的影響。