模糊邏輯

模糊邏輯

模糊邏輯是建立在多值邏輯基礎上,運用模糊集合的方法來研究模糊性思維、語言形式及其規律的科學。

基本介紹

  • 中文名:模糊邏輯
  • 外文名:fuzzy logic
  • 研究問題模糊性思維、語言形式及其規律
  • 基礎多值邏輯
簡介,基本內容,歷史發展,基本理論,套用,程式語言,研究對象,創立和研究模糊邏輯的意義,其他例子,

簡介

基本內容

模糊邏輯指模仿人腦的不確定性概念判斷、推理思維方式,對於模型未知或不能確定的描述系統,以及強非線性、大滯後的控制對象,套用模糊集合和模糊規則進行推理,表達過渡性界限或定性知識經驗,模擬人腦方式,實行模糊綜合判斷,推理解決常規方法難於對付的規則型模糊信息問題。模糊邏輯善於表達界限不清晰的定性知識與經驗,它藉助於隸屬度函式概念,區分模糊集合,處理模糊關係,模擬人腦實施規則型推理,解決因“排中律”的邏輯破缺產生的種種不確定問題 。

歷史發展

1965年美國數學家L. Zadeh首先提出了Fuzzy集合的概念,標誌著Fuzzy數學的誕生。建立在二值邏輯基礎上的原有的邏輯與數學難以描述和處理現實世界中許多模糊性的對象。Fuzzy數學與Fuzzy邏輯實質上是要對模糊性對象進行精確的描述和處理。
L. Zadeh為了建立模糊性對象的數學模型,把只取0和1二值的普通集合概念推廣為在[0,1]區間上取無窮多值的模糊集合概念,並用“隸屬度”這一概念來精確地刻畫元素與模糊集合之間的關係。正因為模糊集合是以連續的無窮多值為依據的,所以,模糊邏輯可看做是運用無窮連續值的模糊集合去研究模糊性對象的科學。把模糊數學的一些基本概念和方法運用到邏輯領域中,產生了模糊邏輯變數、模糊邏輯函式等基本概念。對於模糊聯結詞與模糊真值表也作了相應的對比研究。查德還開展了模糊假言推理等似然推理的研究,有些成果已直接套用於模糊控制器的研製。
創立和研究模糊邏輯的主要意義有:
(1)運用模糊邏輯變數、模糊邏輯函式和似然推理等新思想、新理論,為尋找解決模糊性問題的突破口奠定了理論基礎,從邏輯思想上為研究模糊性對象指明了方向。
(2)模糊邏輯在原有的布爾代數、二值邏輯等數學和邏輯工具難以描述和處理的自動控制過程、疑難病症的診斷、大系統的研究等方面,都具有獨到之處。
(3)在方法論上,為人類從精確性到模糊性、從確定性到不確定性的研究提供了正確的研究方法。此外,在數學基礎研究方面,模糊邏輯有助於解決某些悖論。對辯證邏輯的研究也會產生深遠的影響。當然,模糊邏輯理論本身還有待進一步系統化、完整化、規範化

基本理論

模糊邏輯是二元邏輯的重言式:在多值邏輯中,給定一個 MV-代數A,一個 A-求值就是從命題演算中公式的集合到 MV-代數的函式。如果對於所有 A-求值這個函式把一個公式映射到 1(或 0),則這個公式是一個 A-重言式。因此對於無窮值邏輯(比如模糊邏輯、武卡謝維奇邏輯),我們設 [0,1] 是 A 的下層集合來獲得 [0,1]-求值和 [0,1]-重言式(經常就叫做求值和重言式)。Chang 發明 MV-代數來研究波蘭數學家揚·武卡謝維奇(Jan ?ukasiewicz)在 1920 年介入的多值邏輯。Chang 的完備定理(1958, 1959) 聲稱任何在 [0,1] 區間成立的 MV-代數等式也在所有 MV-代數中成立。通過這個定理,證明了無窮值的武卡謝維奇邏輯可以被 MV-代數所刻畫。後來同樣適用於模糊邏輯。這類似於在 {0,1} 成立的布爾代數等式在任何布爾代數中也成立,布爾代數因此刻畫了標準二值邏輯。
關於邏輯的對象,從大的方面說,可以分為以下幾種觀點:
(1)邏輯是研究思維的;
(2)邏輯是研究客觀世界的;
(3)邏輯是研究語言的;
(4)邏輯是研究推理形式的有效性的。”
這是國內著名的邏輯學學者陳波所作出的歸納。在書中陳波對以上四種觀點進行了一一的剖析,指出了各種觀點的優劣所在。最後他提出了自己的看法,他認為邏輯的研究對象是推理形式的有效性。這一觀點在張清宇主編的《邏輯哲學九章》中李小五撰寫的第一章《什麼是邏輯》也得到了認可。通俗地說就是:邏輯研究的對象就是推理的正確性。更嚴格(更帶學術性)地說就是:邏輯研究的對象就是推理形式的有效性。
邏輯研究的對象就是推理形式的有效性這一觀點得到了大多數學者和專家的認可,我本人對這一觀點也無異議。弄清楚了邏輯的研究對象進而就可以進入我所要談論的問題了,模糊邏輯的研究對象又是什麼呢?在這裡,我想從如下幾個方面來加以討論:
(1)模糊邏輯的產生背景。人類對自然界的認識大致可以劃分為兩類,一類是精確的現象,它可以用精確的語言來加以描述。例如,2+2=4;貴陽市是貴州省的省會;茅台酒是中國的國酒,等等。可以看出這一類現象它們都具有精確的定義和性質。但是,在現實世界中還有一類難以被精確的描述和定義的現象。例如,花溪是個風景優美的地方(究竟何為風景優美呢?):他的父親是個高個子(多高為高個子呢?);張老師是箇中年人(中年人被定義為多少歲呢?),等等。諸如此類的現象數不勝數,與“精確現象”相對應我們稱之為“模糊現象”。為了用嚴謹的科學手段去研究模糊現象、分析模糊性質,模糊數學應運而生。而模糊邏輯就是在模糊數學的基礎之上派生出來的分支學科之一。
(2)模糊邏輯的研究對象。前面已經提及邏輯的研究對象是推理形式的有效性,而具體到模糊邏輯來說,它的研究對象就是模糊推理的有效性。那么什麼又是模糊推理呢?模糊推理和精確推理它們之間有什麼區別和聯繫呢?下面將對這些問題作出討論。
首先,我們來看看什麼是模糊推理,與精確推理一樣,模糊推理也由概念、判斷這些基本的邏輯元素組成,但是模糊推理有自己獨特的推理方式。模糊推理所推出的結論並不具有絕對的真假,它的結論只能用隸屬度來刻畫,例如前例中的張老師是箇中年人,這是一個很典型的模糊判斷句,在這裡我們就不能用傳統邏輯中的絕對的真假來刻畫中年人這一概念了,比如40歲是中年人為真,難道41歲是中年人就被看做是假的嗎?因為在二值邏輯中只有真和假這兩種結論。對於二值邏輯中這一無能為力的問題在模糊邏輯中卻能輕易的解決,我們用查德表示法來描述這一事例,查德表示法是通過分式的和來表示模糊集合中的所有元素及其隸屬度,其中分母代表元素,分子代表隸屬度。上例我們可以表示為(A)=(0.5/張老師),意思是說張老師是中年人從程度上來說只有0.5。這裡就拋開了絕對的真假。但對於模糊的現象也做出了精確的刻畫,之所以要對模糊現象精確化主要是為了模糊推理能夠在機器上實現。
其次,對有效性進行討論。陳波對推理的有效性進行了比較精闢的歸納,並提出了五點要求,他認為一個推理是否有效最好能夠同時滿足以下五個條件:(1)保真性。(2)內容相關性。(3)獨立性。(4)題材中立性或普遍適用性。(5)簡單性。雖然陳波提出了這樣一個框架,但是對於任何一種邏輯推理要同時滿足如上五個標準幾乎是不可能的。這裡我只針對模糊邏輯的有效性發表自己的一些淺顯看法。在模糊邏輯中通常用到的推理有模糊假言推理和模糊條件推理,其中,模糊假言推理又最具有代表性。模糊假言推理之定義是:已知模糊命題A(大前提)包含模糊命題B。如存在與A不完全相同的模糊命題A1(小前提),則能推出相應的結論.我們把這個推理過程稱為模糊假言推理。例如:
(1)若吃的東西營養豐富,則人的身體會好;那么若吃的東西營養比較豐富,則人的身體會怎樣?
(2)若中國在清朝晚期很強大,則不會被帝國主義國家欺負;那么若中國在清朝晚期不是很強大,則會不會被帝國主義國家欺負?
由於模糊假言推理的大小前提都是模糊的,所以其結論也是模糊的。這與傳統邏輯所要求的精確性是完全不同的,那么應該如何對模糊推理進行精確的描述以使之能夠為機器所識別呢?我們可以從人的經驗和模糊數學兩個方面來加以討論。

創立和研究模糊邏輯的意義

(1)運用模糊邏輯變數、模糊邏輯函式和似然推理等新思想、新理論,為尋找解決模糊性問題的突破口奠定了理論基礎,從邏輯思想上為研究模糊性對象指明了方向。
(2)模糊邏輯在原有的布爾代數、二值邏輯等數學和邏輯工具難以描述和處理的自動控制過程、疑難病症的診斷、大系統的研究等方面,都具有獨到之處。
(3)在方法論上,為人類從精確性到模糊性、從確定性到不確定性的研究提供了正確的研究方法
此外,在數學基礎研究方面,模糊邏輯有助於解決某些悖論。對辯證邏輯的研究也會產生深遠的影響。當然,模糊邏輯理論本身還有待進一步系統化、完整化、規範化。

其他例子

如果一個人的高度是 1.8 米,把他考慮為高:
IF male IS true AND height >= 1.8 THEN is_tall IS true
IF male IS true AND height >= 1.8 THEN is_short IS false
但上述的定義卻是不現實的。因此,在模糊規則下,在高和矮之間不做明顯的區分:
IF height >= medium male THEN is_short IS agree somehow
IF height >= medium male THEN is_tall IS agree somehow
在模糊的情況下,沒有像 1,83 米這樣的高度,只有模糊值,比如下列賦值:
dwarf male = [0, 1.3]
msmall male = (1.3, 1.5]
medium male = (1.5, 1.8]
tall male = (1.8, 2.0]
giant male > 2.0 m對於結論,也不只是兩個值,而是五個:
agree not = 0
agree little = 1
agree somehow = 2
agree alot = 3
agree fully = 4
在二值或"脆弱"的情況下,高度為 1.79 米的一個人可能被認為是矮。如果另一個人的高度是 1.8 米或 2.25 米,這些人才被當作是高。
這個脆弱的例子故意的區別於模糊的例子。我們在前提中不能放置
IF male >= agree somehow AND ...因為性別經常被認為是二值信息。所以不象身高這么複雜。

相關詞條

熱門詞條

聯絡我們