代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生...
代數數是代數與數論中的重要概念,指任何整係數多項式的復根。所有代數數的集合構成一個域,稱為代數數域。不是代數數的實數稱為超越數,例如圓周率。...
由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子,或含有字母的數學表達式稱為代數式。例如:ax+2b,-2/3,b^2/26,√a+√2等。...
代數和是指兩個或更多的數或量按照代數加法規律取符號(如 +或-)的總和。... (-15)-19寫成8+(-4)+(+15)+(-19),就可以看成“8、-4、+15、-19”的...
設A,B,D是集合,稱A×B到D的映射為A×B到D的代數運算。如有n元函式f:S1×S2×...×Sn→S中有S=S1=S2=...=Sn則稱f 為S 上的n 元代數運算,或...
關係代數是一種抽象的查詢語言,用對關係的運算來表達查詢,作為研究關係數據語言的數學工具。關係代數的運算對象是關係,運算結果亦為關係。關係代數用到的運算符包括...
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一...
在數學中,霍普夫代數是一類雙代數,亦即具有相容的結合代數與余代數結構的向量空間,配上一個對極映射,後者推廣了群上的逆元運算。霍普夫代數以數學家海因茨·霍普夫...
代數是研究數、數量、關係、結構與代數方程的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及了解變數的概念...
在數學中,某個集合X上的σ代數(σ-algebra)又叫σ域 ,是X的所有子集的集合(也就是冪集)的一個子集。這個子集滿足對於可數個集合的並集運算和補集運算的封閉...
代數方程,即由多項式組成的方程。有時也泛指由未知數的代數式所組成的方程,包括整式方程、分式方程和根式方程。例如:5x+2=7,x=1等。 代數,把algebra翻譯成代數...
初等代數(elementary algebra)是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的代數式的代數運算理論和方法的數學分支學科。...
代數幾何,是現代數學的一個重要分支學科。它的基本研究對象是在任意維數的(仿射或射影)空間中,由若干個代數方程的公共零點所構成的集合的幾何特性。這樣的集合通...
代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生...
代數集是特殊的集合,它是若干個多項式的公共根的集合,是與代數簇密切相關的概念。...... 代數集是特殊的集合,它是若干個多項式的公共根的集合,是與代數簇密切相關...
集合代數發展並描述了集合的基本性質和規律,集合論運算,如並集、交集、補集,以及集合的關係,如等於、包含。這門學科系統研究如何來表達和進行上述的運算和關係的操作...
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性...
取決於輸出信號,同時輸出信號也直接取決於輸入信號時,由於數字計算的時序性,而出現的由於沒有輸入無法計算輸出,沒有輸出也無法得到輸入的“ 死鎖環” ,稱之為代數...
留下來的n-1階行列式叫做元素aₒₑi的餘子式,記作Mₒₑ,將餘子式Mₒₑ再乘以-1的o+e次冪記為Aₒₑ,Aₒₑ叫做元素aₒₑ的代數餘子...
sigma代數( sigma-algebra)Σ 是一個樣本空間(Ω)的子集的非空集合,其元素滿足以下特徵: 1. 空集∈Σ 2. 如果A∈Σ,那么Ac(A的補集)也屬於Σ 3. Σ內...
代數學基本定理:任何復係數一元n次多項式 方程在複數域上至少有一根(n≥1),由此推出,n次復係數多項式方程在複數域內有且只有n個根(重根按重數計算)。代數基本...
邏輯代數是一種用於描述客觀事物邏輯關係的數學方法,由英國科學家喬治·布爾(George·Boole)於19世紀中葉提出,因而又稱布爾代數。邏輯代數有一套完整的運算規則,包括...
非超越函式也稱為代數函式。代數函式的例子包括多項式和平方根函式。一函式的不定積分運算是超越函式的豐富來源,如對數函式便來自倒數函式的不定積分。在微分代數里,...
李群是一種只有一個運算的、比較簡單的代數結構;是可用來建立許多其他代數系統的一種基本結構。在數學中,李群(Lie group)是具有群結構的實流形或者複流形,並且群...