ADM質量

理論物理學中,以Richard Arnowitt、Stanley Deser及查爾斯·米斯納(Charles W. Misner)三人姓氏字首為名的ADM質量(ADM energy)或等價地稱ADM能量是一個於廣義相對論定義能量的特殊方法。此法只能套用到一些特別的時空幾何,這些幾何可以漸進式地接近一個在無限遠處有良好定義的度規張量,舉例來說:能漸進式地接近閔可夫斯基時空的一種時空幾何。在這些例子中的ADM能量定義為此度規張量與其漸進接近的度規張量偏離程度之函式。換句話說,ADM能量是在無限遠處重力場強度的計量。

基本介紹

  • 中文名:ADM質量
  • 外文名:ADM-Masse
  • 領域:量子力學
簡介,哈密頓力學,黎曼流形,亞黎曼流形,泊松代數,相關條目,

簡介

理論物理學中,以RichardArnowitt、StanleyDeser及查爾斯·米斯納(Charles W.Misner)三人姓氏字首為名的ADM質量(ADM energy)或等價地稱ADM能量是一個於廣義相對論定義能量的特殊方法。此法只能套用到一些特別的時空幾何,這些幾何可以漸進式地接近一個在無限遠處有良好定義的度規張量,舉例來說:能漸進式地接近閔可夫斯基時空的一種時空幾何。在這些例子中的ADM能量定義為此度規張量與其漸進接近的度規張量偏離程度之函式。換句話說,ADM能量是在無限遠處重力場強度的計量。
這個量又稱作“ADM哈密頓量”(ADM Hamiltonian),特別是存在有不同於上方定義但卻仍可得到相同結果的公式。 若要求的漸進形式是時間無關(例如閔可夫斯基時空本身),則涉及到時間平移對稱性諾特定理於是引出ADM能量是守恆的。根據廣義相對論,在更一般性、時間相依的背景下,總能量守恆定律無法成立——舉例來說,在物理宇宙學中,其即被完全違反。其中特別是宇宙暴脹可以從“無”中產生出能量(以及質量),因為真空能量密度大約是個常數,但宇宙總體積是以指數成長的速率在增加(膨脹宇宙)。

哈密頓力學

哈密頓力學哈密頓於1833年建立的經典力學的重新表述,它由拉格朗日力學演變而來。拉格朗日力學是經典力學的另一表述,由拉格朗日於1788年建立。哈密頓力學與拉格朗日力學不同的是前者可以使用辛空間而不依賴於拉格朗日力學表述。關於這點請參看其數學表述。
適合用哈密頓力學表述的動力系統稱為哈密頓系統

黎曼流形

哈密頓量的重要特例是二次型,也就是,可以如下表達的哈密頓量
其中
是纖維
組態空間中的點q上的餘切空間)上的余度量。該哈密頓量完全由動能項組成。
若考慮一個黎曼流形或一個偽黎曼流形,使得存在一個可逆,非退化的度量,則該余度量可以簡單的由該度量的逆給出。哈密頓-雅可比方程的解就是流形上的測地線。特別的有,這個情況下的哈密頓流就是測地流。這些解的存在性和解集的完備性在測地線條目中有詳細討論。

亞黎曼流形

當余度量是退化的時,它不是可逆的。在這個情況下,這不是一個黎曼流形,因為它沒有一個度量。但是,哈密頓量依然存在。這個情況下,在流形Q的每一點q余度量是退化的,因此余度量的小於流行Q的維度,因而是一個亞黎曼流形。
這種情況下的哈密頓量稱為亞黎曼哈密頓量。每個這樣的哈密頓量唯一的決定余度量,反過來也是一樣。這意味著每個亞黎曼流形由其亞黎曼哈密頓量唯一的決定,而其逆命題也為真:每個亞黎曼流形有唯一的亞黎曼哈密頓量。亞黎曼測地線的存在性由周-臘雪夫斯基定理給出。
連續實值海森堡群提供了亞黎曼流形的一個例子。對於海森堡群,哈密頓量為
沒有在哈密頓量中被涉及到。

泊松代數

哈密爾頓系統可以幾種方式推廣。如果不僅簡單的利用辛流形上的光滑函式結合代數,哈密爾頓系統可以用更一般的交換有單位的泊松代數表述。一個狀態是一個(裝備了恰當的拓撲結構的)泊松代數上的連續線性泛函,使得對於代數中的每個元素AA映射到非負實數。
進一步的推廣由南部力學給出。

相關條目

  • ADM形式
  • 廣義相對論中的質量

相關詞條

熱門詞條

聯絡我們