高等工程數學(2019年機械工業出版社出版的圖書)

高等工程數學(2019年機械工業出版社出版的圖書)

本詞條是多義詞,共6個義項
更多義項 ▼ 收起列表 ▲

《高等工程數學》是2019年機械工業出版社出版的圖書。

基本介紹

  • 中文名:高等工程數學
  • 作者:鄭洲順
  • 出版時間:2019年
  • 出版社機械工業出版社
  • ISBN: 9787111618461
內容簡介,圖書目錄,

內容簡介

本書編寫形式上採用通過實際工程案例出發的方式,引申出數學模型以及計算方法,然後在著重講解理論結果,以問題導向來編寫本書。全書共13章,通過城市供水量的預測模型、湘江流量估計模型、養老保險問題、小行星軌道方程計算問題、回歸問題、產品次品率的推斷、屈服點與含碳量和含錳量的關係、燈絲配料對燈絲壽命的影響等問題,分別介紹了數學建模與誤差分析、插值與擬合算法、數值積分法、非線性方程求根的數值解法、線性方程組的數值解法、線性方程組求解的疊代法、常微分方程數值解法簡介、估計與檢驗、回歸分析、方差分析與正交試驗設計、線性規劃模型與理論簡介、線性規劃的單純形算法、線性規劃的對偶問題、*最佳化問題數學建模專題等內容。使得學生能夠通過解決實際問題來掌握理論內容。本書可供工科(特別是工程類)碩士研究生作為教材或學習參考書,也可供相關專業的教師和工程技術人員參考。

圖書目錄

目 錄
前 言
第 1 章 數學建模與誤差分析 1
1.1 數學與科學計算 1
1.2 數學建模及其重要意義 1
1.2.1 數學建模的過程 1
1.2.2 數學建模的一般步驟 2
1.2.3 數學建模的重要意義 3
1.3 數值方法與算法評價 4
1.4 誤差的種類及其來源 6
1.4.1 模型誤差 6
1.4.2 觀測誤差 6
1.4.3 截斷誤差 6
1.4.4 捨入誤差 7
1.5 絕對誤差和相對誤差 7
1.5.1 絕對誤差和絕對誤差限 7
1.5.2 相對誤差和相對誤差限 8
1.6 誤差的傳播與估計 9
1.6.1 誤差傳播估計的一般公式 9
1.6.2 誤差在算術運算中的傳播 11
1.6.3 算法誤差實例分析 12
習題 1 16
第 2 章 城市供水量的預測模型———
插值與擬合算法 18
2.1 城市供水量的預測問題 18
2.2 求未知函式近似表達式的插值法 18
2.2.1 求函式近似表達式的必要性 18
2.2.2 插值多項式的存在唯一性 19
2.3 求插值多項式的拉格朗日( Lagrange) 法 20
2.3.1 拉格朗日插值基函式 20
2.3.2 拉格朗日插值多項式 20
2.3.3 插值餘項 22
2.3.4 插值誤差的事後估計法 23
2.4 求插值多項式的牛頓法 24
2.4.1 向前差分與牛頓向前插值公式 24
2.4.2 向後差分與牛頓向後插值公式 26
2.4.3 差商與牛頓基本插值多項式 27
2.5 求插值多項式的改進算法 29
2.5.1 分段低次插值 29
2.5.2 三次樣條插值 31
2.6 求函式近似表達式的擬合法 36
2.6.1 曲線擬合的最小二乘法 37
2.6.2 加權最小二乘法 44
2.6.3 利用正交函式作最小二乘法擬合 45
2.7 城市供水量預測的簡單方法 47
2.7.1 供水量增長率估計與數值微分 47
2.7.2 利用插值多項式求導數 48
2.7.3 利用三次樣條插值函式求導 49
2.7.4 城市供水量預測 50
習題 2 54
第 3 章 湘江流量計算問題———數值積分法 56
3.1 數值積分公式的構造及代數精度 56
3.1.1 數值求積的必要性 56
3.1.2 構造數值求積公式的基本方法 56
3.1.3 求積公式的餘項 57
3.1.4 求積公式的代數精度 57
3.2 數值求積的牛頓 - 柯特斯方法 58
3.2.1 牛頓 - 柯特斯公式 59
3.2.2 複合牛頓 - 柯特斯公式 60
3.2.3 誤差的事後估計與步長的自動選擇 63
3.2.4 複合梯形法的遞推算式 64
3.3 龍貝格算法 66
3.3.1 龍貝格算法的基本原理 66
3.3.2 龍貝格算法計算公式的簡化 68
3.4 高斯型求積公式與測量
位置的最佳化選取 69
3.4.1 高斯型求積公式的定義 69
3.4.2 高斯型求積公式的構造與套用 70
3.5 湘江流量的估計 72
習題 3 72
第 4 章 養老保險問題———非線性方程求根的數值解法 74
4.1 養老保險問題 74
4.1.1 問題的引入 74
4.1.2 模型分析 74
4.1.3 模型假設 74
4.1.4 模型建立 74
4.1.5 模型求解 75
4.2 非線性方程求根的數值方法 75
4.2.1 根的搜尋相關定義 75
4.2.2 逐步搜尋法 75
4.2.3 二分法 76
4.2.4 疊代法 77
4.2.5 牛頓公式 82
4.2.6 牛頓法的幾何意義 82
4.2.7 牛頓法的局部收斂性 83
4.2.8 牛頓法套用舉例 84
4.2.9 牛頓下山法 85
4.2.10 弦截法與"物線法 86
4.2.11 多項式求值的秦九韶算法 88
4.2.12 代數方程的牛頓法 89
4.2.13 牛頓法對重根的處理 89
4.3 養老保險模型的求解 90
習題 4 91
第 5 章 小行星軌道方程計算問題———
線性方程組的數值解法 92
5.1 小行星軌道方程問題 92
5.1.1 問題的引入 92
5.1.2 模型的分析 92
5.1.3 模型的假設 93
5.1.4 模型的建立 93
5.2 線性方程組數值解法概述 93
5.3 直接解法 94
5.3.1 高斯消元法 94
5.3.2 矩陣的三角分解 97
5.3.3 高斯消元法的計算量 99
5.3.4 高斯主元素消元法 99
5.3.5 完全主元素消元法 100
5.3.6 列主元消元法 101
5.3.7 高斯 - 約當消元法 103
5.3.8 高斯消元法的變形 105
5.3.9 平方根法 107
5.3.10 追趕法 109
5.4 疊代法 112
5.4.1 雅可比疊代法 113
5.4.2 高斯 - 賽德爾疊代法 114
5.4.3 疊代法的收斂性 115
5.4.4 超鬆弛疊代法 121
5.5 誤差分析 124
5.5.1 矩陣的條件數及誤差分析 124
5.5.2 疊代改善法 128
5.5.3 捨入誤差分析 130
5.6 小行星軌道方程問題的模型求解 130
習題 5 131
第 6 章 常微分方程數值解法 133
6.1 實際問題的微分方程模型 133
6.2 簡單的數值方法與基本概念 134
6.2.1 常微分方程初值問題 134
6.2.2 歐拉法及改進的歐拉法 135
6.2.3 截斷誤差與算法精度的階 137
6.3 線性多步法 140
6.3.1 數值積分法 140
6.3.2 待定係數法 142
6.4 非線性單步法———龍格 - 庫塔法 144
6.4.1 泰勒展開法 144
6.4.2 龍格 - 庫塔法 145
6.5  一階方程組和高階方程的初值問題 150
6.6  常微分方程邊值問題的數值解法 151
6.6.1 試射法 151
6.6.2 差分法 153
習題 6 156
第 7 章 產品的次品率的推斷———估計與檢驗 157
7.1 問題的提出 157
7.2 基本概念和重要結論 157
7.3 估計方法 161
7.3.1 點估計 161
7.3.2 區間估計 163高等工程數學
7.4 假設檢驗 165
7.4.1 參數假設檢驗 165
7.4.2 分布假設檢驗 169
習題 7 171
第 8 章
……

相關詞條

熱門詞條

聯絡我們