關於稀疏性問題的多目標最佳化算法的研究

關於稀疏性問題的多目標最佳化算法的研究

《關於稀疏性問題的多目標最佳化算法的研究》是依託西安交通大學,由李輝擔任項目負責人的面上項目。

基本介紹

  • 中文名:關於稀疏性問題的多目標最佳化算法的研究
  • 項目類別:面上項目
  • 項目負責人:李輝
  • 依託單位:西安交通大學
中文摘要,結題摘要,

中文摘要

本項目研究在多目標算法框架下解決稀疏問題的可行性與有效算法。稀疏問題是研究如何從眾多要素中提取核心要素的科學問題。正則化方法是解決稀疏問題的最常用方法,通常導致非凸、非光滑、非Lipschitz連續、以及多極值的最佳化問題。現有的正則化方法主要缺陷在於:(1)這些方法都是基於單目標搜尋算法,一次僅能找到單個局部最優解;(2)其性能依賴於正則化參數的設定以及對最優解的稀疏度約束。針對這些問題,我們將從多目標最佳化角度發展求解稀疏問題的全局最佳化算法。具體地,我們將在多目標演化算法的框架下研究多目標匹配追蹤算法、多目標疊代閾值算法、多目標二次規劃方法和基於偏好的多目標算法,以及相關的收斂性理論。這些算法都具有單次找一組全局最優解且易於並行實現的優點。本項目所獲結果將為稀疏問題的求解提供一套全新的(基於多目標最佳化框架的)研究途徑,並為稀疏正則化問題(特別是壓縮感知問題)提供了一套高效、快速的實用算法。

結題摘要

稀疏重構算法設計是壓縮感知研究中的核心問題之一。當前的主流方法大多都是基於正則化算法框架,採用單目標的最佳化方法和理論來設計算法。稀疏最佳化問題本質上也是一個約束最佳化問題,利用多目標框架處理這類問題具有先天的優勢,避免了正則化參數設定的難題。本課題主要研究了多目標框架下的稀疏重構算法,具體研究內容包括:(1)基於閾值疊代的多目標重構算法; (2) 基於偏好機制的多目標重構算法;(3) 基於二次建模的隨機最佳化方法;(4) 多目標算法的分解與合作策略研究。通過本項目的研究,我們發現現有的閾值疊代算法在低觀測和長信號上重構表現很不理想,利用多目標重構算法則可以很好解決這些問題。具體來講,我們在基於分解算法框架下,設計了有效的稀疏重構方法,顯著提升了現有閾值疊代方法的性能。新方法在標準信號測試以及核磁共振圖像重構上有著非常優秀的表現。本項目的研究成果為稀疏最佳化提供了新的有力工具,也為解決各類實際套用問題提供了更可靠平台,對於稀疏最佳化算法和理論研究有著重大推動作用。

相關詞條

熱門詞條

聯絡我們