異方差性

異方差性

異方差性是相對於同方差而言的。所謂同方差,是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函式中的隨機誤差項滿足同方差性,即它們都有相同的方差。如果這一假定不滿足,即:隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。

基本介紹

  • 中文名:異方差性
  • 外文名:heteroscedasticity
  • 相對於:方差
  • 類型:一個重要假定
定義,含義,來源,類型,後果,處理方法,

定義

異方差性是計量經濟學術語。指回歸模型中擾動項的方差不全相等。假設線性回歸模型
中,擾動項 ε 的分量
是均值為零,彼此獨立的,但
不全相等,在這種情況下。OLS 估計雖然具有無偏性和一致性,卻不是最優線性無偏估計。因此在預測時
波動較大。為此,在套用 OLS 方法之前要對模型的異方差性進行檢驗,並設法消除異方差性。
若線性回歸模型存在異方差性,則用傳統的最小二乘法估計模型,得到的參數估計量不是有效估計量,甚至也不是漸近有效的估計量;此時也無法對模型參數進行有關顯著性檢驗
對存在異方差性的模型可以採用加權最小二乘法進行估計。
異方差性的檢測——White test
在此檢測中,原假設為:回歸方程的隨機誤差滿足同方差性。對立假設為:回歸方程的隨機誤差滿足異方差性。判斷原則為:如果nR2>chi2 (k),則原假設就要被否定,即回歸方程滿足異方差性。
在以上的判斷式中,n代表樣本數量,自由度為k(解釋變數的個數)。chi2(卡方統計)值可查表所得。

含義

回歸模型的隨機擾動項ui在不同的觀測值中的方差不等於一個常數,Var(ui)
常數(i=1,2,…,n),或者Var(ui)
Var(uj)(i,j=1,2,…,n),這時我們就稱隨機擾動項ui具有異方差性(Heteroskedasticity)。
在實際經濟問題中,隨機擾動項ui往往是異方差的,但主要在截面數據分析中出現。
例如:
(1)調查不同規模公司的利潤,發現大公司的利潤波動幅度比小公司的利潤波動幅度大;
(2)分析家庭支出時發現高收入家庭支出變化比低收入家庭支出變化大。在分析家庭支出模型時,我們會發現高收入家庭通常比低收入家庭對某些商品支出有更大的方差;
異方差性破壞了古典模型的基本假定,如果我們直接套用最小二乘法估計回歸模型,將得不到準確、有效的結果。

來源

1.模型中缺少某些解釋變數,從而隨機擾動項產生系統模式
由於隨機擾動項ui包含了所有無法用解釋變數表示的各種因素對被解釋變數的影響,即模型中略去的經濟變數對被解釋變數的影響。如果其中被略去的某一因素或某些因素隨著解釋變數觀測值的不同而對被解釋變數產生不同的影響,就會使ui產生異方差性。
例如,以某一時間截面上不同收入家庭的數據為樣本,研究家庭對某一消費品(如服裝、食品等)的需求,設其模型為:
,其中Qi表示對某一消費品的需求量,Ii為家庭收入,ui為隨機擾動項。ui包括除家庭收入外其他因素對Qi的影響。如:消費習慣、偏好、季節、氣候等因素,ui的方差就表示這些因素的影響可能使得Qi偏離均值的程度。在氣候異常時,高收入家庭就會拿出較多的錢來購買衣服,而低收入的家庭購買衣服的支出就很有限,這時對於不同的收入水平IiQi偏離均值的程度是不同的,Var(ui)
常數,於是就存在異方差性了。
異方差性容易出現在截面數據中,這是因為在截面數據中通常涉及某一確定時點上的總體單位。比如個別的消費者及其家庭、不同行業或者農村、城鎮等區域的劃分,這些單位各自有不同的規模或水平,一般情況下用截面數據作樣本時出現異方差性的可能性較大。
測量誤差對異方差性的作用主要表現在兩個方面:一方面,測量誤差常常在一定時間內逐漸積累,誤差趨於增加,如解釋變數X越大,測量誤差就會趨於增大;另一方面,測量誤差可能隨時間變化而變化,如抽樣技術或收集資料方法的改進就會使測量誤差減少。所以測量誤差引起的異方差性一般都存在於時間序列中。
例如,研究某人在一定時期內學習打字時打字差錯數Yt與練習打字時間Xt之間的關係。顯然在打字練習中隨時間的增加,打字差錯數將減少,即隨著Xt的增加Yt將減小。這時Var(ut)將隨Xt的增加而減少,於是存在異方差性。
不僅在時間序列上容易出現異方差性,利用平均數作為樣本數據也容易出現異方差性。因為許多經濟變數之間的關係都服從常態分配,例如不同收入組的人數隨收入的增加是常態分配,即收入較高和較低的人是少數的,大部分人的收入居於較高和較低之間,在以不同收入組的人均數據作為樣本時,由於每組中的人數不同,觀測誤差也不同,一般來說,人數多的收入組的人均數據較人數少的收入組的人均數據具有較高的準確性,即Var(ui)隨收入Ii呈現先降後升的趨勢,這也存在著異方差性。
3.模型函式形式設定不正確
模型函式形式的設定誤差。如將指數曲線模型誤設成了線性模型,則誤差有增大的趨勢。
4.異常值的出現
隨機因素的影響,如政策變動、自然災害、金融危機、戰爭和季節等。

類型

異方差一般可歸結為三種類型:
(1)單調遞增型:隨X的增大而增大,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動越來越大
(2)單調遞減型:隨X的增大而減小,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動越來越小
(3)複雜型:與X的變化呈複雜形式,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動複雜多變沒有系統關係。
檢驗存在的方法
事實也證明,實際經濟問題中經常會出現異方差性,這將影響回顧模型的估計、檢驗和套用。因此在建立計量經濟模型時應檢驗模型是否存在異方差性。關於異方差性檢驗的方法大致有:圖示檢驗法、Goldfeld - Quandt 檢驗法、White檢驗法、Park檢驗法和Gleiser檢驗法。

後果

在古典回歸模型的假定下,普通最小二乘估計量是線性、無偏、有效估計量,即在所有無偏估量中,最小二乘估計量具有最小方差性——它是有效估計量。如果在其他假定不變的條件下,允許隨機擾動項ui存在異方差性,即ui的方差隨觀測值的變化而變化,這就違背了最小二乘法估計的高斯——馬爾柯夫假設,這時如果繼續使用最小二乘法對參數進行估計,就會產生以下後果:
1.參數估計量仍然是線性無偏的,但不是有效的;
2.異方差模型中的方差不再具有最小方差性;
3.t檢驗失去作用;
4.模型的預測作用遭到破壞。
補救措施:
  1. 對模型變換,當可以確定異方差 的具體形式時,將模型作適當變換有可能消除或減輕異方差的影響。
  2. 加權最小二乘法,對原模型變換的方法與加權二乘法實際上是等價的,可以消除異方差。
  3. 買模型的對數變換,運用對數變換能使測定變數值的尺度縮小。它可以將兩個數值之間原來10倍的差異縮小到只有2倍的差異。其次,經過對數變換後的線性模型,其殘差e表示相對誤差,而相對誤差往往比絕對誤差有較小的差異。

處理方法

  1. 假如已知異方差函式具體形式,進行方差齊性變換;
  2. 假如不知異方差函式的具體形式,擬合條件異方差模型。

相關詞條

熱門詞條

聯絡我們