極大濾子

極大濾子

極大濾子(maximal filter)亦稱超濾子,是一類特殊的濾子。設F是集合X上的濾子,若對於包含F的濾子H恆有F=H,則稱F為極大濾子,對於集合X上的任意濾子F,恆存在包含F的極大濾子,若F為X上極大濾子,則對於任意AX,必有A∈F或X-A∈F。

基本介紹

  • 中文名:極大濾子
  • 外文名:maximal filter
  • 所屬學科:數學
  • 別名:超濾子
  • 所屬領域:一般拓撲學
  • 相關概念:極大理想、真濾子、真理想等
  • 類型:一般拓撲學領域術語
定義,相關概念,相關定理,

定義

定義一
是格L的真理想,若真正包含
的理想只有L,則稱
是L的極大理想。設F是格L的真濾子,若真正包含F的濾子只有L,則稱F是格L的極大濾子,簡稱超濾子
定義二
極大濾子(maximal filter)亦稱超濾子,是一類特殊的濾子。設F是集合X上的濾子,若對於包含F的濾子H恆有F=H,則稱F為極大濾子,對於集合X上的任意濾子F,恆存在包含F的極大濾子,若F為X上極大濾子,則對於任意AX,必有A∈F或X-A∈F。

相關概念

設(X,≤)是偏序集
定義1 設(X,≤)是偏序集,
若A=↑A,則稱A為上集;若A=↓A,則稱A為下集
顯然,偏序集X的子集A是一個上集的充分必要條件
,若a≤b,則b∈A;A是下集的充分必要條件是
,若b≤a,則b∈A。
定義2 設L是格,I是L的非空子集,若I是上定向集,即
,則稱I為L的理想基;若I是L的理想基又是下集,則稱I是L的理想
定義3 設L是格,F是L的非空子集,若F是下定向集,即
,則稱F是L的濾子基;若F是L的濾子基又是上集,則稱F是L的濾子。
顯然,格L的理想和濾子是L的子格。
定義4 不等於L的理想(濾子)稱為L的真理想(真濾子)。
顯然,有最大元1的格的理想I是真理想的充分必要條件
;有最小元0的格的濾子F是真濾子的充分必要條件是
定義5設L是格,I是L的真理想,若I滿足:
,若
,則
,稱I是L的素理想
設F是L的真濾子,若F滿足:
,若
,則
,稱F是L的素濾子
易證,格L的子集I是素理想若且唯若L-I是L的素濾子。

相關定理

定理1設L是有最大元1的分配格,則L中的極大理想均為素理想;對應地,有最小元0的分配格中,任一超濾子均為素濾子。
證明:
是L的極大理想
,若
,且
,現證
,令
易證
是包含
的理想,由於
是極大理想,所以
=L,由於1∈L=
,則存在
從而
,由於b≤bVd,故
所以
是素理想。
另一部分的證明類似。
布爾格中有更好的結論。
定理2 設B是布爾格,
是B的真理想,則下列條件等價:
(1)
是極大理想;
(2)
素理想
(3)
證明:(1)
(2)定理1已證。
(2)
(3)
,由於
是素理想知,
,若
,且
,故
,與
是真理想矛盾,所以
(3)
(1)設J是真包含
的理想,取
,則
,因此
,從而
,所以
是極大理想。
定理3 設B是布爾格,F是B的真濾子,則下列條件等價:
(1)F是極大濾子;
(2)F是素濾子;
(3)

相關詞條

熱門詞條

聯絡我們