偏序集

偏序集

設R是集合A上的一個關係,如果R是自反的、反對稱的和可傳遞的,則稱R是集合A的偏序關係,簡稱偏序,記作“≤”。對於(a,b)∈R,就把它表示成a≤b。

若在集合A上給定一個偏序關係≤,則稱集合A按偏序關係≤構成一個偏序集合,集合A和偏序R一起稱為偏序集,記作(A,≤)。

基本介紹

  • 中文名:偏序集
  • 外文名:Partially ordered set (Poset)
  • 記作:≦
  • 自反性:對任一,則x≦x;
  • 反對稱性:如果x≦y,且y≦x,則x=y;
  • 傳遞性:如果x≦y,且y≦c ,則x≦c
偏序集與偏序關係的概念,偏序集的哈塞圖,

偏序集與偏序關係的概念

定義1,設P是集合,P上的二元關係“≤”滿足以下三個條件,則稱“≤”是P上的偏序關係(或部分序關係):
(1)自反性:a≤a,∀a∈P;
(2)反對稱性:∀a,b∈P,若a≤b且b≤a,則a=b;
(3)傳遞性:∀a,b,c∈P,若a≤b且b≤c,則a≤c;
具有偏序關係的集合P為偏序集(或稱半序集),記為(P,≤)。a≤b讀作“a小於或等於b”或“a含於b”,a<b讀作“a小於b”或“a真含於b”。這裡a<b等價於a≤b且a≠b,∀a,b∈P。若a≤b或b≤a,則稱a與b是可比的,否則就說a與b是不可比。a與b不可比記作a||b。
定義2,設(P,≤)是偏序集,對於P中任意二元x,y有x≤y
yRx,則稱R是≤的逆關係,記作≤-1。≤-1稱為≤的逆。
定理1,設(P,≤)是偏序集,則(P,≤-1)也是偏序集,偏序集(P,≤-1)稱為偏序集(P,≤)的對偶,簡記作P-1
定義3,設(P,≤)是偏序集,N
P,由於關係≤是P×P的子集,令≤N=≤∩(N×N)是≤與N×N的交集,則稱≤N是關係≤在N上的限制。
定理2,設(P,≤)是偏序集,關係≤N是≤在N上的限制,則(N,≤N)是偏序集,稱為(P,≤)的子偏序集。

偏序集的哈塞圖

刻畫偏序關係的一種示意圖。即有限集A的偏序結構<A,R>的直觀圖示。圖中用小圓圈表示集合A的元素。在a,b∈A,aRb時,從a有一條連續上升的不必筆直的線段或折線到達b。下面各圖都可以看成集合的哈塞圖。設R是集合A的偏序關係,則在偏序結構<A,R>的哈塞圖中:
1、aRb,若且唯若a到b有一條或幾條嚴格上升的線段或折線連結。a與b間無線連結,或雖有折線連結但在上下起伏的時候,
。如圖1中
等(
為R的補關係)。
偏序集
2、無水平的線段。
3、當R是全序時,哈塞圖可畫成一個上升的鏈狀圖,如圖4。
4、同一個集合,當偏序關係不同時,有不同的哈塞圖。例如,當A={2,3,4,6,8}時,關係R=“x不大於y”,G=“x整除y”時,R與G的哈塞圖分別為圖5與圖6。
偏序集
5、集合A的兩個哈塞圖相同,若且唯若通過變形可以把一個變成另一個,但是必須不改變圖的連線並保持線段的上升方向。例如,圖6、圖7是同一個哈塞圖。
6、把一個關係的哈塞圖上下反轉,得到它的逆關係的哈塞圖,但左右翻轉還是原關係的哈塞圖。
哈塞(Hasse,H.)是第一個使用這種通俗的圖來表示偏序。

相關詞條

熱門詞條

聯絡我們