基本介紹
- 中文名:柯西-黎曼方程
- 外文名:Cauchy-Riemann Equations
- 屬性:偏微分方程
- 學科:數理
- 簡稱:C-R方程
- 發明者:柯西
- 發展者:黎曼
研究歷史,方程,證明過程,
研究歷史
複分析中的柯西-黎曼微分方程是提供了可微函式在開集中全純函式的充要條件的兩個偏微分方程,以柯西和黎曼得名。這個方程組最初出現在達朗貝爾的著作中(d'Alembert 1752)。後來歐拉將此方程組和解析函式聯繫起來(Euler 1777)。 然後柯西(Cauchy 1814)採用這些方程來構建他的函式理論。黎曼關於此函式理論的論文(Riemann 1851)於1851年問世。
方程
(1)![](/img/3/cac/wZ2NnL0IWN5MmNiZjMlljZ2czNiNTO3gjY5U2N4MmZ5UWMjZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/cac/wZ2NnL0IWN5MmNiZjMlljZ2czNiNTO3gjY5U2N4MmZ5UWMjZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(2)![](/img/1/7a2/wZ2NnLhJzN4QjMyQWNiBDMyMTMxIWOxgTYlVjMwImM3cTM4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/7a2/wZ2NnLhJzN4QjMyQWNiBDMyMTMxIWOxgTYlVjMwImM3cTM4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
柯西-黎曼方程是函式在一點可微的必要條件。
設函式
在區域D內有定義,則它在D內解析的充分必要條件是:
![](/img/9/8b6/wZ2NnL4kTM3Y2YxEzYmJ2YhVGM2YWO2IDOmVzM4czY4czN3kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
1)
與
在D內處處可微;
![](/img/7/627/wZ2NnL0UmM0QWN5EmMiJmYhVmM1QDNiFWO5EzY5EGM3QDZiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/ef3/wZ2NnLwEGMhVWOjFWM0QTM4AjM1MTOmFDNyYGZ5YWZ3MzYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
2)
與
在D內處處滿足一階偏微分方程組
,
。
![](/img/7/627/wZ2NnL0UmM0QWN5EmMiJmYhVmM1QDNiFWO5EzY5EGM3QDZiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/ef3/wZ2NnLwEGMhVWOjFWM0QTM4AjM1MTOmFDNyYGZ5YWZ3MzYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/cac/wZ2NnL0IWN5MmNiZjMlljZ2czNiNTO3gjY5U2N4MmZ5UWMjZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/7a2/wZ2NnLhJzN4QjMyQWNiBDMyMTMxIWOxgTYlVjMwImM3cTM4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
證明過程
設函式
定義在區域D內,並在D內一點
可導(或可微),於是
![](/img/9/8b6/wZ2NnL4kTM3Y2YxEzYmJ2YhVGM2YWO2IDOmVzM4czY4czN3kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/c23/wZ2NnLyMDOiJWN3IDZxUGOjdzNyUTO1QDOjFWNihzN0ImYiJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/568/wZ2NnL2UjN5kzYjNmZxkzM3QWOidDNwcTZllzY3IDNmNWZwkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/17d/wZ2NnLzImNmZzNzczM4YmMiFTNxQmM0AjNyUjM5YTY4ImM0gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/c86/wZ2NnLxMDN2ETNjNTNjVjMzMjN3MzYxUGNmFzYzIDZxcTMhFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
其中
![](/img/1/1ed/wZ2NnLxkDM5ADMkFWNxcDMxEDZ4ImY4QjMyAjN5EGNlVzN3Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/ca1/wZ2NnLlVWO2gTY1M2YlJ2NzETOzY2N0QjN1IGNmN2NwUTZiN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
代入式
![](/img/7/568/wZ2NnL2UjN5kzYjNmZxkzM3QWOidDNwcTZllzY3IDNmNWZwkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
並比較實部和虛部得
![](/img/1/8b8/wZ2NnL1EDNwcDOmVjNxMGN1IjMxMTN3kjM4EGZ5gzMyQGN0Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/84a/wZ2NnLiFTMkVWOlZzMlNTOmV2M3cDM2UzY1UGNilzMxUDZkdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/f45/wZ2NnLjNmYlNmY5UzY1IjMwADNkNTM3QWO2UTY3MDN1I2MhVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
由於
,
![](/img/5/84d/wZ2NnLkVGNhRWZxYzMjRWO0kjNiJjZwIDZiNzNmhjYiVzY5YzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/a80/wZ2NnLiZDOzImZ2gTYmNjYwgzMmJ2M4kzNzAzN4MjN0AjYxQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
因此
及
在點
可微,並且成立
![](/img/7/627/wZ2NnL0UmM0QWN5EmMiJmYhVmM1QDNiFWO5EzY5EGM3QDZiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/ef3/wZ2NnLwEGMhVWOjFWM0QTM4AjM1MTOmFDNyYGZ5YWZ3MzYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/c27/wZ2NnL1QWOwMWNzMmYyEDOkNTY2IzM1U2NhBDOwI2M2QmZxgzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/4e5/wZ2NnL1QjNzITMhZ2NmBDZmhTYxEDMmBjMjFGM4AjMxgjN0Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/cac/wZ2NnL0IWN5MmNiZjMlljZ2czNiNTO3gjY5U2N4MmZ5UWMjZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/7a2/wZ2NnLhJzN4QjMyQWNiBDMyMTMxIWOxgTYlVjMwImM3cTM4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
稱為柯西-黎曼(Cauchy-Riemann)方程,簡稱C-R方程。
這就得到了
在點z可導的必要條件。實際上,這個條件也是充分的,以下證明充分性。
![](/img/8/17a/wZ2NnLlJ2YkBDOzQDZ2gjZzMWNyYjZ3QGMkFWN0QjMlZmZ3MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
設
,
在點
可微,則有
![](/img/7/627/wZ2NnL0UmM0QWN5EmMiJmYhVmM1QDNiFWO5EzY5EGM3QDZiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/ef3/wZ2NnLwEGMhVWOjFWM0QTM4AjM1MTOmFDNyYGZ5YWZ3MzYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/a0f/wZ2NnLxUWNlRjN2EGOldDOwEWMllDN4MmNwU2M4YjNlFjZ3YzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/118/wZ2NnLldjNjlzYhJGZzEmM3YTN1gTZxUGM1gjMhJjN4MGM5Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/833/wZ2NnL2E2YjRjY3EDMmZGO3IWO5QjYhRTZ2EWOklzM4ATY3czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
於是由C-R方程得
![](/img/e/689/wZ2NnLiZGN3ImZhZTO1QTZjVDZ0YDZjRmNmFmMwQDZmRzMiR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
其中,![](/img/e/9a4/wZ2NnLycTM2YGOxgTZkVGOhRmNzAjYwMTY3AzYzIzYhJTOjV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/9a4/wZ2NnLycTM2YGOxgTZkVGOhRmNzAjYwMTY3AzYzIzYhJTOjV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
由於
,
![](/img/9/a15/wZ2NnLjRGO2YzMhJTOxQGN1IDM4I2M3IWM4czMjBjYjV2M1czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/f8e/wZ2NnLyEWM4IzY1AjMlVTN0MjZkhDO2UWOiVTNjNWYzImM0I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
因此![](/img/e/68c/wZ2NnL2EDM4kjMwU2Y1UmN0QDZlNjN5EjZ3IWYkdjM3cDN2MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/68c/wZ2NnL2EDM4kjMwU2Y1UmN0QDZlNjN5EjZ3IWYkdjM3cDN2MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
即函式
在
可導。
![](/img/9/8b6/wZ2NnL4kTM3Y2YxEzYmJ2YhVGM2YWO2IDOmVzM4czY4czN3kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/c23/wZ2NnLyMDOiJWN3IDZxUGOjdzNyUTO1QDOjFWNihzN0ImYiJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
由以上討論可知,當定理的條件滿足時,
在點z的導數為:
![](/img/8/17a/wZ2NnLlJ2YkBDOzQDZ2gjZzMWNyYjZ3QGMkFWN0QjMlZmZ3MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/80e/wZ2NnLhlDMiFGNxYTYzYzMlNTY3EjNhZGZmZWO0MmZ5UTZxE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)