時間生物學

時間生物學(英語:Chronobiology;字首來自希臘語Chronos,指時間)又譯生物鐘學,廣為人知的生理時鐘。是一門科學,它的任務是研究生物體內與時間有關的周期性現象,或曰這些現象的時間機制。生物節律是憑經驗總結得出的,但有其生理學和分子生物學基礎。生物鐘學與所謂的生理節律無關。

基本介紹

  • 中文名:時間生物學
  • 外文名:Chronobiology
  • 希臘語:Chronos
  • 又譯:生物鐘學
  • 創立者弗朗茲·哈伯格(Franz Halberg)
學科簡介,老化機制,生物節律,節律現象,常規時間,生物節律種類,超晝夜節律,近潮汐節律,次晝夜節律,近晝夜節律,研究歷史,生物鐘的位置,單細胞生物,植物,動物,人類,實驗研究,

學科簡介

時間生物學認為,生物體乃至植物體的生命隨晝夜交替、四時更迭的周期性運動,揭示出生理活動的周期性節律。古代醫學視天地為大宇宙,人體為小宇宙,謂大小宇宙息息相通。健康人體的活動大多呈現24小時晝夜的生理節律,這與地球有規律自轉所形成的24小時周期是相適應的,表明生理節律受外環境周期性變化(光照的強弱和氣溫的高低)的影響而同步。諸如人體的體溫、脈搏、血壓、氧耗量、激素的分泌水平,均存在晝夜節律變化。生物近似時鐘的結構,被稱之為“生物鐘”。周期節奏近似晝夜24±4小時稱“日鐘”, 近似29.53±5天稱為“月鐘”,近似周年12±2月稱為“年鐘”。時間生物學研究揭示了植物、動物乃至人的生命活動具有一個“持久的”、“自己上發條”和“自己調節”的生物鐘 。

老化機制

生物鐘老化機制至少包括以下幾個方面:
(1)生物節律振幅減小。各種組織器官功能減退,例如,神經組織萎縮導致神經傳導速度減慢,消化吸收功能減弱,肝臟解毒功能減退;心肌萎縮,心功能減退,如老年人醛固酮、睪酮、黃體生成素晝夜節律振幅明顯減小或消失。生物鐘處於高潮期,還可抵消這些功能減退,但處於低潮或臨界期,則有病變及死亡的危險。
(2)生物節律穩態遭到嚴重損害。夜班工人體溫、血壓夜高於晝,睡眠晝夜顛倒,日積月累,使生物節律一定程度損害。
(3)同步因子(生活習慣、光照周期定時進餐)作用的減弱。由於退休,長期生活習慣因改變而不適應,戶外接受日光時間減少,干擾了情緒節律,機體衰老與同步因子削弱是有關的。
人與自然界是一個統一的整體。人們只有順從它的變化及時地作出適應的調節,才能保持健康。天地四時氣候變化規律有著春溫、夏熱、秋涼、冬寒以及春生、夏長、秋收、冬藏的天地大經。賢人長壽秘訣是按照天地、日月、星辰的自然運行規律,適應陰陽升降變化,“春夏 養陽,秋冬養陰”的養生方法,使之長壽健康。歷代長壽老人均具有起居,飲食規律的生活。儘管現實生活中常常有些事不盡人意,但長壽者由於保持樂觀情緒,正確對待和處理矛盾,使生活節律中同步因子不斷維持動態平衡,這對延緩衰老有著不可估量的回春作用。

生物節律

節律現象

體溫在晚睡醒來之前就已經開始升高。就是說人體已經為快要到來的活動做準備。 就是在黃昏或夜行性的動物,甚至是植物,都存在這種“做準備的”的現象。 植物在日出之前就會激活光合作用相關器官,為光合作用做準備,以最長時間的利用光能。 很多植物在日間某些時候會展開或合上其花朵。還有一些植物,在一段日子裡花朵相繼開放,只在特定的鐘點合成香料和花蜜。蟲媒如蜜蜂就在會恰在此時到訪。

常規時間

鐘點 (小時) 高潮
2:00 惰性
3:00 出生率
4:00 死亡率
6:00 尿液體積
9:00 睪酮生成
11:00 尿液的酸性
12:00 血蛋白
13:00 健康,體溫
14:00 心跳,麻木狀態
16:00 體重
18:00 血壓
19:00 牙疼
22:00 白細胞
24:00 外科手術死亡率

生物節律種類

根據周期長度,將生物節律分為四種:

超晝夜節律

超晝夜的(亞日的)節律(Infradian Rhythmus),該詞源於拉丁語:“infra”為“底下”,“dies”為“日”,亦即周期比一天長的節律。 例如鳥類的遷徙;季節性的(大概 365.25天長)冬眠;還有與退漲潮相關的半月周期,如在滿月新月出現大潮,而半月時出現小潮(大概 14.25 天),銀漢魚只在漲潮時在岸上產卵;或者太陰日節律的,以28.5為周期(磯沙蠶屬)。

近潮汐節律

近潮汐節律(Circatidal Rhythmus),跟隨12.5小時的潮汐節律。一些海岸線的動物有這種節律,例如水生的蟹類動物漲潮時才會活動,而生長在岸上的蟹則會在退潮時覓食。

次晝夜節律

次晝夜(超日)的節律(Ultradian Rhythmus)源於拉丁語的“ultra”(超)和“dies”(天、日),其頻率超過日頻率,就是說一天出現兩次以上(嚴格來說是整數次,這是與近潮汐節律的區別)。這些短於24小時的節律的例子有蝙蝠的捕食周期、成人90分鐘睡眠循環、垂體的間歇性荷爾蒙分泌等。

近晝夜節律

近晝夜節律(Circadiane Rhythmus)來自拉丁語“circa”(大約)和“dies”,為接近24小時長的節律,如人類睡眠和甦醒、植物的運動等。
研究得最徹底的是近晝夜節律,當然有歷史的原因——近晝夜節律比周年節律更明顯,但更重要的是近晝夜節律對人類來說更有現實意義。以下講解若無特別說明,都是指近晝夜節律。

研究歷史

在18世紀天文學家Jean Jacques d’Ortous de Mairanvon就描述了含羞草的日間葉運動。通過實驗他得知,即使在黑暗中葉子也會呈現這種節律。類似的報導也見於Georg Christoph Lichtenberg,Christoph Wilhelm Hufeland,林奈達爾文。但直到20世紀人們才開始對該現象作科學研究。在該領域的先驅有:Wilhelm Pfeffer,Erwin Bünning,卡爾·馮·費舍爾,Jürgen Aschoff和Colin Pittendrigh,弗朗茲·哈伯格(Franz Halberg,1919-2013,創造了術語“Chronobiology”)。
對生物節律的一個重要的發現是,很多自然節律在持續的同等強度的實驗室條件下也能產生,就是說生物節律並不依賴於外部環境諸如每日光照和溫度的節律變化。內部時鐘的同步是通過時間變化的媒介完成的,如光和溫度。

生物鐘的位置

最近十幾年的生物鐘研究發現,生物體確實存在日常意義的晝夜“時鐘”,並可以告訴生物體的每日鐘點。它們的晝夜周期的誤差常常可以精確到數分鐘。研究發現具有晝夜生物鐘性質的組織按照調控機能等級可以分為:中央生物鐘(central clocks)和外周生物鐘(peripheral clocks)。從目前所知道的所有生物鐘模型研究得知,晝夜生物鐘是細胞自主的,也就是說,某些細胞就具有生物鐘的特性。雖然晝夜生物鐘受外界環境(比如光照溫度等條件)的調控,複雜生物的中央晝夜生物鐘往往並不存在於光感受器上。比如,哺乳動物的中央晝夜生物鐘存在於下丘腦的視交叉上核(Suprachiasmatic nucleus, SCN)。

單細胞生物

從20世紀40年代就已經知道,單細胞生物也有自己的生物鐘。所以從中可得知,生物鐘的運行並不一定需要一個網路作為硬體。 藻類如眼蟲屬或衣滴蟲有趨光性晝夜節律。 草履蟲有晝夜生理過程。 海生的腰鞭毛蟲, 如多邊膝溝藻,也有自己的晝夜節律。它在日出前一個小時就會浮到水面,形成厚厚的一片,進行光合作用。在有利條件下它們會形成紅潮。在日落之前它們則會重新潛到海中。晚間它們藉助螢光素酶發出生物光,人們推測這是可以驅趕天敵撓足亞綱的。 這些節律也可以在實驗室里通過施加持續的影響而發生。
同時原核生物細菌藍藻)也有晝夜節律。

植物

直至今天在植物中仍沒找到生物鐘的中央控制部分或是起搏點。現在只能推測,光合作用以及與之聯繫的運動時由遍布植物體的多個時鐘共同控制的。
例如光合作用器官的新陳代謝,在實驗中可以觀察到是由於光照對基因表達產生影響引起的。 每天在葉綠體的類囊體膜上的光收集器(Lhc)都會進行光合作用。光會影響細胞核基因的轉錄翻譯。西紅柿到目前為止已發現19個Lhc-基因。
目前在Lhc-基因的運作機制和其啟動子方面進行著很多的研究

動物

在動物中起搏點位於中樞神經系統
對於昆蟲果蠅存在腦部的腹側的側邊小神經元(Small Ventral Lateral Neurons, sLNv)中,這些神經元表達色素擴散因子(Pigment Dispersing Factor, PDF)。不在光葉中。
對於軟體動物在視網膜的基底部。
對於脊椎動物在視交叉上核和松果體(Pineal organ,Epiphyse)中。松果體分泌褪黑激素(N-乙醯-5-甲氧基色胺)。
兩棲類動物,爬行類動物和很多類動物中松果體是對光敏感的,除此之外它還控制了除褪黑激素晝夜產生節律外的其他節律,如體溫和進食。從中可得知,松果體比視交叉上核更早掌管著生物節律。
哺乳類動物
哺乳類動物中松果體和視交叉上核共同控制了節律,但還有很多其他證據表明,還有其他起搏點的存在,如視網膜。但這些時鐘是如何運作的,還是一個未知數

人類

如上所述,生物鐘學對人類來說越來越重要。第一,我們的生活模式越來越偏離生物鐘。輪班制越來越多。第二,我們越來越少去曬太陽。特別在冬天,我們在室內過上大部分的時間,光強度鮮有高於500流明。在戶外即使是陰天最少有8000流明,而太陽光則有100000流明。因此就生物鐘系統來說我們大多生活在黑暗中。我們的晝夜節律其實每天都需要一次新的“校正”,但現在卻遇上了很大的困難。後果可能是失眠和飲食失調,精力不足直到深度抑鬱症。在北歐(如挪威), 在冬天光效率甚至直逼0。在當地,為治療冬天抑鬱症人們採取了光療法。 第三,我們越來越頻繁的跨時區旅遊(即從東向西,或從西向東),這是對我們晝夜節律一個重大挑戰。
時間利用的習慣分成兩類。一類晚睡晚起,睡眠時間長——“貓頭鷹型”,而“雲雀型”則是早睡早起。這個差別是基因素因引起的,所以要改過來是很難的。這也意味著,我們大部分人是逆節律生活的。 青春期年輕人幾乎全是貓頭鷹型,因此推遲上課時間一個小時,特別是在冬天,無論對授課效果還是健康都是大有好處的。 除了這兩種類型外,還有睡眠時間長短之分。這些類型可以相互組合。還有一種類型的人,他們對睡眠和日光同步束手無策。
生物鐘學與我們的年齡有關。嬰兒時期次晝夜系統(短的活動時間)和長的睡眠交替,直到晝夜系統發展到能夠掌管生物鐘為止。但隨著年齡的增長它也會漸漸失效。這也是老年人睡眠和活動障礙的原因。

實驗研究

如上所述,動物和植物的周期性現象很早就為人所知。1759年就有人製作了第一張豆類植物葉運動的近晝夜節律圖表。首先植物的葉子會與槓桿的一端相連,槓桿的另一端放置在一個滾輪之上。若葉子下垂,槓桿會在滾輪上留下一條向上的線,相反當葉子向上提起的時候,就會得到一條向下的曲線。實驗為期數天。前三天每天光照12小時,第四天起停止光照, 若果這種光是葉運動的原因的話,人們應該會得到這樣的結果,就是葉子在沒有光照的後幾天會一直下垂。但事實並非如此。因此光照並不是葉運動的原因。
20世紀80年代有實驗,去觀察究竟外在因素會不會產生作用。太空實驗室1號將真菌脈孢菌帶到太空,去看看離地後生物節律的變化。實驗結果卻與在Cape Canaveral對照組所得的結果相同。從此時起,人們在近晝夜節律,次晝夜(超日)節律和超晝夜(亞日)節律是內因產生的這一點上,達成了共識。
上世紀最重要的研究手段是基因突變篩選。1970年Konopka首次在黑腹果蠅(Drosophila melanogaster)上套用了這一技術。這種果蠅的成蟲破蛹行為有著明顯的近晝夜節律,接近24小時。就是說蠅破蛹的時刻不是隨機的,而是在一天的特定時刻。若一天已經過了這一時刻,那么成蟲不會在當天,而時下一天出蛹。這種節律代代相傳。Konopka找到了三種特變品種並不斷培育其後代:第一種Pershort,並不遵循這種24小時節律,而是19小時,其後代也如是。第二種Perlong,其周期為29小時。第三種Per-,沒有節律。所有這些特變品種在基因的同一區段上出現了缺陷。90年代末在不同的哺乳類動物里科學家找到了這些“時鐘基因”(BMal, Clock, MPer1, Mper2, Mper3, Cry1, Cry2)。
20世紀90年代開始,生物鐘學開始了跨學科協作。該領域的研究不單止著眼於某種方法或是某種現象,而是去尋找其內在的聯繫。微生物學生理學生態學心理學數學為時間生物學提供了重要的支持。而時間生物學的研究對象包括植物和動物,還有人。
時間生物學對畜牧業,社會學和醫學有重要的意義,如輪班制,藥理學精神病學都離不開時間生物學。行為生理學研究生物鐘的大腦機制,提供了生理學基礎。
時間生物學與人類疾病的關係
生物鐘異常人類的許多疾病的發生密切相關。例如:生物鐘的異常加速腫瘤的生長,缺失生物鐘核心因子per2的小鼠容易患淋巴瘤。在精神性疾病如躁狂性憂鬱症與生物鐘的核心因子Reb-Erbα的異常相關。

相關詞條

熱門詞條

聯絡我們