星系動力學

星系動力學

研究恆星系統中物質分布和運動狀態動力學理論﹐又稱恆星動力學。這裡所說的恆星系統是指由恆星以及星際氣體星際塵埃所組成的整體。常見的恆星系統是雙星﹑聚星﹑星團﹑星協﹑星系以及星系團。星系的主要成分是幾十億到幾千億顆.不能只用動力學的方法﹐還必須要用統計的概念和方法。但是﹐星系中的恆星幾乎完全沒有碰撞﹐其平均自由程比星系直徑大得多﹐其弛豫時間比星系的年齡還要長﹐因此不能直接利用統計物理學的方法。這就要求星系動力學一定要有自己獨特的方法。

基本介紹

  • 中文名:星系動力學
  • 外文名:galactic dynamics
  • 作者:韓念國
  • 別稱:恆星動力學
簡介,理論基礎,參考書目,

簡介

【中文詞條】星系動力學
【外文詞條】galactic dynamics
【作??者】韓念國

理論基礎

星系動力學中兩個最基本的物理量是﹕分布函式Ψ 和引力勢函式 V 。基本參考系通常採用原點在星系中心﹐基本平面在星系盤上的柱面坐標系(﹐ ﹐z )﹐(﹐Θ ﹐Z )表示相應的速度分量﹐t 表示時間。引力勢是位置與時間的函式V (﹐ ﹐z ﹐t )﹐而分布函式是位置﹑速度與時間的函式 (﹐ ﹐z ﹐﹐Θ ﹐Z ﹐t )。星系動力學的基本方程是﹕無碰撞玻耳茲曼方程泊松方程。在柱面坐標系中它們可以寫為﹕ 式中的是圓周率﹐G 是萬有引力常數﹐ρ 是星系中的物質密度(包括恆星與氣體)。此外﹐還要用到流體動力學方程來討論星際氣體或者模擬恆星盤。無碰撞玻耳茲曼方程是劉維爾相體積不變定理的直接推論。1915年﹐金斯首先把它用於星系動力學。因此﹐在天文學文獻中也稱為金斯方程或劉維爾方程。金斯對引力勢 V 作了一些理想的簡化假設﹐然後求解分布函式的通積分。從此開始了星系動力學的理論研究。
星系動力學星系動力學
隨著星系較差自轉的發現﹐完成了速度橢球分布理論的研究。1927年﹐林德布拉德求出了速度橢球與奧爾特常數(見銀河系自轉)之間的重要關係。1928年﹐在分布函式Ψ 服從速度橢球分布律的假設下﹐奧爾特解出軸對稱星系的分布函式﹐成功地解釋了星系較差自轉的現象。1940年﹐在橢球分布的假設下﹐對分布函式Ψ 進行了最一般的理論研究。他精確地表述了星系動力學中的基本概念﹐細心地論證了星系動力學中的重要結果﹐寫出一本恆星動力學的經典著作。他在書中證明﹐在具有較差自轉的有限穩恆態恆星系統中﹐勢函式一定是軸對稱的﹐即V =V ( ﹐z )。
旋渦星系具有旋渦結構﹐通常有兩條明亮的旋臂。這在表面上似乎同較差自轉的事實有矛盾。所謂星系作較差自轉﹐就是說﹐到星系中心的距離不同﹐自轉角速度也不同。裡邊快﹐外邊慢﹐旋臂越轉越緊﹐幾圈以後就會破壞。四十年代﹐林德布拉德提出了星系密度波理論來解釋旋渦結構的存在。他認為旋臂並不是永遠由一些固定的恆星組成的“物質臂”﹐而是隨著時間的不同因此這裡聚集了更多的恆星。反過來﹐聚集的恆星又使得那裡的引力勢最小。這就是密度波理論的基本思想。林德布拉德計算了單個恆星在星系引力場中的軌道。六十年代以後﹐發展成為用電子計算機對星系進行“數值試驗”的方法。從1964年開始﹐林家翹徐遐生完成了密度波的理論。他們提出了準穩旋渦結構(QSSS)假說﹐認為旋渦星系的基態是穩恆的而且是軸對稱的﹐同時有一個旋渦形式的攝動迭加在基態之上。他們證明﹐旋渦結構一旦形成就會長期維持下去。他們求出了密度波的色散關係並成功地解釋了大量的觀測事實﹐同時又在密度波理論的基礎上﹐研究了大尺度的星系激波﹐為解釋恆星的形成提供了一種可能的機制。
星系動力學的研究雖然成果不少﹐但是尚未解決的問題仍然很多。旋渦結構的起源還不清楚﹐有關棒旋星系動力學幾乎一無所知﹐就是已經建立起來的理論﹐也大都帶有半經驗的性質。

參考書目

林家翹著﹐胡文瑞﹑韓念國譯﹕《星系螺旋結構理論》﹐科學出版社﹐北京﹐1977。
戴文賽編著﹕《恆星天文學》﹐科學出版社﹐北京﹐1965。

相關詞條

熱門詞條

聯絡我們