數值計算方法(2016年高等教育出版社出版圖書)

數值計算方法(2016年高等教育出版社出版圖書)

《數值計算方法》是由劉春鳳、常錦才主編,高等教育出版社2016年出版的iCourse·教材。《數值計算方法》不僅適用於高等學校理工類各專業本科生,也可供工科研究生及工程技術人員進修、自學和參考。

《數值計算方法》介紹數值計算方法中基礎性和套用較廣的方法,包括數值計算的基本問題、函式插值與逼近、數值微分與數值積分等內容,每章都有思維導圖,配備了章導語和習題,並引入Mathematica的相關內容,配置了套用例子。

基本介紹

  • 書名:數值計算方法
  • 作者:劉春鳳、常錦才
  • ISBN:978-7-04-046129-9
  • 類別:iCourse·教材
  • 頁數:289頁
  • 出版社:高等教育出版社
  • 出版時間:2016年9月26日
  • 裝幀:平裝
  • 開本:16開
  • 版面字數:320千字
成書過程,內容簡介,教材目錄,教學資源,教材特色,作者簡介,

成書過程

《數值計算方法》的基本內容依據數值計算方法課程教學基本要求確定。
《數值計算方法》由劉春鳳、常錦才任主編,楊愛民、龔佃選、閻少宏任副主編,該教材的出版得到了華北理工大學領導、高等教育出版社的支持
2016年9月26日,《數值計算方法》由高等教育出版社出版。

內容簡介

《數值計算方法》介紹數值計算方法中基礎性和套用較廣的方法,包括數值計算的基本問題、函式插值與逼近、數值微分與數值積分、線性代數方程組的直接解法和疊代解法、非線性方程的數值解法、矩陣特徵值與特徵向量的計算、常微分方程初值問題的數值解法等,每章都有思維導圖,配備了章導語和習題,並引入Mathematica的相關內容,配置了套用例子。《數值計算方法》全部內容學習完成大約需要56-70學時。

教材目錄

前輔文第1章 緒論
1.1 數值計算方法概述
1.2 誤差與有效數字
1.3 誤差的傳播
1.4 誤差的改善
1.5 Mathematica套用實例
習題
第2章 插值法
2.1 插值問題與插值多項式
2.2 Lagrange(拉格朗日)插值
2.3 Newton(牛頓)插值
2.4 Hermite(埃爾米特)插值
2.5 分段低次插值
2.6 三次樣條插值
2.7 Mathematica套用實例
習題
第3章 函式逼近與曲線擬合
3.1 函式逼近與函式空間
3.2 範數與賦范線性空間
3.3 內積與內積空間
3.4 正交多項式
3.5 最佳平方逼近
3.6 曲線擬合的最小二乘法
3.7 Mathematica套用實例
習題
第4章 數值微分與數值積分
4.1 數值積分的基本概念
4.2 Newton-Cotes求積公式
4.3 復化求積公式
4.4 Romberg求積公式
4.5 Gauss型求積公式
4.6 數值微分
4.7 Mathematica套用實例
習題
第5章 解線性方程組的直接方法5.1 Gauss消元法
5.2 主元素法
5.3 直接三角分解法
5.4 平方根法與改進的平方根法
5.5 Mathematica套用實例
習題
第6章 解線性方程組的疊代法
6.1 疊代法原理
6.2 Jacobi(雅可比)疊代法
6.3 Gauss-Seidel(高斯-賽德爾)疊代法
6.4 鬆弛法
6.5 疊代法的收斂條件
6.6 Mathematica套用實例
習題
第7章 非線性方程(組)的數值解法
7.1 方程求根與二分法
7.2 疊代法及其收斂性
7.3 Newton疊代法及其改進
7.4 解非線性方程組的Newton法
7.5 Mathematica套用實例
習題
第8章 矩陣特徵值與特徵向量的計算
8.1 冪法和反冪法
8.2 Jacobi方法
8.3 QR方法
8.4 Mathematica套用實例
習題
第9章 常微分方程初值問題的數值解法
9.1 初值問題及數值解法
9.2 Euler(歐拉)方法
9.3 改進的Euler方法
9.4 Runge-Kutta(龍格-庫塔)法
9.5 線性多步法
9.6 一階微分方程組與高階微分方程的數值解法
9.7 Mathematica套用實例
習題
(註:目錄排版順序為從左列至右列)

教學資源

  • 課程資源
《數值計算方法》是與“愛課程”網上劉春鳳教授主講的國家級精品資源共享課“數值計算方法”配套使用的教材。
《數值計算方法》配有Abook數字課程,該課程包括學習目標、授課視頻、工程案例、學習課件、通用程式、本章小結、常見問題等資源。
數字課程名稱出版社出版時間內容提供者
數值計算方法
高等教育出版社、高等教育電子音像出版社
2016年9月
劉春風、常錦才

教材特色

1、《數值計算方法》力求通俗易懂、簡潔實用,以能正確選擇計算對象的計算方法為前提,領會計算原理和掌握計算步驟為主線,注重如何在計算機上實現數值計算。
2、《數值計算方法》圍繞數值計算方法的內容展開,引入Mathematica的相關內容,並配置了適量的套用例子。
3、《數值計算方法》介紹的數值方法大多是基礎性和套用較廣的方法,涉及數值計算的基本問題、函式的插值與逼近數值微積分、常微分方程初值問題的數值解、線性代數方程組和特徵值問題的數值解法、非線性方程的數值解法等。

作者簡介

劉春鳳,女,華北理工大學理學院教授。
常錦才,男,華北理工大學理學院教授、信息與計算科學系主任。

相關詞條

熱門詞條

聯絡我們