對偶元素是射影幾何的一個術語,指射影幾何中元素間的一種特殊關係。在歐氏幾何中,幾何圖形是點的軌跡,是把點作為圖形基本元素,而射影幾何認為圖形可看成是直線的包絡。直線作為點的對偶元素,也是一種基本元素,從而有了線坐標。
基本介紹
- 中文名:對偶元素
- 外文名:dual elements
- 一級學科:數理科學
- 二級學科:數學術語
- 套用:射影幾何
- 定義:射影幾何中元素間的一種特殊關係
對偶元素是射影幾何的一個術語,指射影幾何中元素間的一種特殊關係。在歐氏幾何中,幾何圖形是點的軌跡,是把點作為圖形基本元素,而射影幾何認為圖形可看成是直線的包絡。直線作為點的對偶元素,也是一種基本元素,從而有了線坐標。
對偶元素是射影幾何的一個術語,指射影幾何中元素間的一種特殊關係。在歐氏幾何中,幾何圖形是點的軌跡,是把點作為圖形基本元素,而射影幾何認為圖形可看成是直線...
設有點和直線所組成的圖形,將此圖形中各元素改為它的對偶元素,各作圖改為對偶作圖。其結果形成另一圖形,這兩個圖形叫做對偶圖形(dual figures)。...
對偶命題是具有特定關係的兩個命題,指成對偶對應的幾何命題。射影幾何中一個命題與把其中的各個幾何元素換成對偶元素,把其中的各個運算換成對偶運算而得到的另一...
代數對偶(algebraic duality)是射影幾何的一個術語,即採用齊次坐標後,用雙線性齊次方程表示圖形的對偶性,例如在二維射影空間,方程u1x1+u2x2+u3x3=0表示直線[u1...
在幾何學,若一種多面體的每個頂點均能對應到另一種多面體上的每個面的中心,它就是對方的對偶多面體。...
自對偶命題(self-dual propositions )是一種特殊的對偶命題,即意義一致的兩個命題。例如,“三點及其兩兩連線組成一個三點形”與“三線及其兩兩交點組成一個三線...
對偶向量族(dual family of vectors)是分別來自賦范線性空間與其共軛空間的滿足一定條件的一對子集。...
對偶公理(axiom of pairing)亦稱無序對公理.ZFC系統的集合論公理之一其內容為:對任何 u和v,存在一個集合,它恰以u與v為其元素.其符號表達式為 ...
在射影幾何里,把點和直線叫做對偶元素,把“過一點作一直線”和“在一直線上取一點”叫做對偶運算。在兩個圖形中,它們如果都是由點和直線組成,把其中一圖形里...
在射影幾何里,把點和直線叫做對偶元素,把“過一點作一直線”和“在一直線上取一點”叫做對偶運算。在兩個圖形中,它們如果都是由點和直線組成,把其中一圖形里...
點在直線上與直線通過點有完全的對稱性,也就是使得點和直線在邏輯上取得平等的地位,它們稱為平面上的對偶元素,我們把平面上一個以點和直線構成的圖形,把其中的...