歷史沿革
1894年,為紀念數理學會主席埃沃斯榮任教育大臣,數理學會通過一項決議:舉行以埃沃斯命名的,由高中學生參加的數學競賽,每年十月舉行,每次出三題,限4小時完成,允許使用任何參考書,試題以奧妙而奇特的形式見長,一般都有富創造特點的簡明解答。在埃沃斯的領導下,這一數學競賽對匈牙利的數學發展起了很大的作用,許多卓有成就的數學家、科學家是歷屆埃沃斯競賽的優勝者,如1897年弗葉爾、1898年馮
卡門等。
受到匈牙利的影響,數學競賽在東歐各國蓬勃開展:1902年羅馬尼亞,1934年
前蘇聯,1949年
保加利亞,1950年波蘭,1951年前
捷克斯洛伐克……相繼進行了數學競賽。
把中學生的數學競賽命名為“數學奧林匹克”的是前蘇聯,採用這一名稱的原因是數學競賽與體育競賽有著許多相似之處,兩者都崇尚
奧林匹克精神。競賽的成果使人們意外地發現,數學競賽的強國往往也是體育競賽的強國,這給了人們一定的啟示。
1934年在
列寧格勒,1935年在莫斯科,有關的
國立大學分別組織了地區性的數學競賽,並稱之為“中學數學奧林匹克”。當時,莫斯科的著名數學家都參加了這一工作。
前蘇聯的數學奧林匹克分為五級:學校奧林匹克,縣奧林匹克,地區奧林匹克,共和國奧林匹克,全國奧林匹克,再選出參加
國際數學奧林匹克的六名代表。
對國際間組織數學競賽最熱心的是羅馬尼亞的教授
羅曼。經過他的積級策劃,第一屆競賽由羅馬尼亞主辦,1959年7月22日至30日在
布加勒斯特舉行,得到
聯合國教科文組織的資助,當時參加競賽的學生共52名,分別來自東歐的羅馬尼亞、
保加利亞、匈牙利、波蘭、前
捷克斯洛伐克、前
德意志民主共和國和前蘇聯等7個國家。每個國家有8名隊員,前蘇聯只派了4名隊員。以後國際奧林匹克數學競賽都是每年7月舉行(中間只在1980年斷過一次),參賽國從1967年開始逐漸從東歐擴展到西歐、亞洲、美洲,最後擴大到全世界。
美國1974年參加競賽,中國1985年參加競賽。經過40多年的發展,
國際數學奧林匹克的運轉逐步制度化、規範化, 有了一整套約定俗成的常規,並為歷屆東道主所遵循。
2010年7月6日至12日,第51屆國際奧林匹克數學競賽在
哈薩克斯坦首都
阿斯塔納舉行,來自105個國家的1200名選手參賽。中國隊以197分的總成績奪得團體總分第一,6名隊員獲得金牌,中國隊員聶子佩成為本屆比賽中唯一一個獲 得滿分的選手。俄羅斯、美國、韓國、哈薩克斯坦分獲第二至第五名。後聶子佩同學又以唯一滿分獲得羅馬尼亞大師杯金牌。
2013年,參加這項賽事的代表隊有80餘支。
2014年7月3日至7月13日,第55屆國際數學奧林匹克競賽(IMO)在南非開普敦舉行。本屆競賽共有來自101個國家的560名選手參賽。在此次比賽中,中國隊的六名隊員共收穫五金一銀,並以201分的總成績力壓獲193分的美國隊,榮獲團體總分第一!這是自1985年中國隊首次參加國際數學奧林匹克競賽以來第19次獲得總分第一。
2016年,
香港將主辦世界頂級中學生數學競賽──國際數學奧林匹克(IMO)。
競賽目的
國際奧林匹克競賽的目的是:發現鼓勵世界上具有數學天份的青少年,為各國進行科學教育交流創造條件,增進各國師生間的友好關係。
競賽流程
選手要求
國際奧林匹克數學競賽由參賽國輪流主辦,經費由東道國提供,但旅費由參賽國自理。每支代表隊參賽選手最多6位參賽中學生、一名領隊、一名副領隊和觀察員。參賽者必須在比賽時未屆20歲,且不能有任何比中學程度較高的學歷;參加IMO的次數不限。
由於領隊知悉問題,他們在比賽結束後才可和參賽者接觸。他們居住於大會安排酒店,地點不對外公布。參賽隊員則由副領隊帶領,有時也有觀察員隨行,居住在大學宿舍,比賽完結前不得與外界通訊,包括打電話和上網。大會也為各參與隊伍安排一名導遊照料參賽隊員,向參賽隊員解釋日程和守則,帶領他們往返各場所,以及安排比賽後遊覽活動等。領隊、副領隊和參賽者住宿飲食的開支由大會負擔,觀察員則需自費。
比賽試題
自第24屆(1983年)起,IMO試卷由6道題目組成,每題7分,滿分42分。賽事分兩日進行,每日參賽者有4.5小時來解決3道問題(由上午9時到下午1時30分)。通常每天的第1題(即第1、4題)最簡單,第2題(即第2、5題)中等,第3題(即第3、6題)最困難。所有題目不超出公認的中學數學課程範圍,一般分為代數、幾何、數論和組合數學四大類。
IMO題目植根於中學數學,但在具體知識方面有所擴展,方法上有更高要求。一般來說,IMO題目的難度較大,靈活性強,富於智巧。要解決這些問題,一般不需要參賽者具有高深的數學知識(例如微積分),但需要參賽者有正確的思維方式,良好的數學素養和基本功,堅韌的毅力以及一定的創造性。原則上,IMO不鼓勵選手利用超出中學範疇的數學知識與工具解決問題(但並沒有明確限制),並會在確定題目時充分考量這點。考慮到上述特點,IMO試題及其備選題,連同各國的一些數學競賽題目和訓練題目一起,代表著一種介於初等數學和高等數學之間的特殊的數學——競賽數學。
比賽的擬題方法為除主辦國外的參與國家提供問題和解答,由主辦國組成擬題委員會,從提交題目中挑選候選題目。各國領隊在隊員前數天抵達,共同商議出問題及官方答案,及由各領隊把試題翻譯為他們各自語言。不獲選的候選試題,直至下一屆比賽前不予公布,以便各參賽國作為訓練和測試之用。產生6道試題。東道國不提供試題。試題確定之後,寫成英、法、德、俄文等工作語言,由領隊譯成本國文字。主試委員會由各國的領隊及主辦國指定的主席組成。這個主席通常是該國的數學權威。
主試委員會的職責有7條:1)、選定試題;2)、確定評分標準;3)、用工作語言準確表達試題,並翻譯、核准譯成各參加國文字的試題;4)、比賽期間,確定如何回答學生用書面提出的關於試題的疑問;5)、解決個別領隊與協調員之間在評分上的不同意見;6)、決定獎牌的個數與分數線。
2007年第48屆國際數學奧林匹克IMO試題由以下國家提供
第1題:紐西蘭;
第3題:俄羅斯;
第5題:英國;
第6題:荷蘭;
2008年第49屆國際數學奧林匹克IMO試題由以下國家提供
第1題由俄羅斯的Andrey Gavrilyuk提供。
第2題由奧地利的Walther Janous提供。
第3題由立陶宛的Kęstutis Česnavičius提供。
第4題由韓國的Hojoo Lee提供,他已為IMO供題多道,經常上mathoe的就都知道此人了。
第5題由法國的Bruno Le Floch and Ilia Smilga共同提供。
第6題由俄羅斯的Vladimir Shmarov提供
中國向IMO提供的題目
1986第27屆IMO第2題,這是我國向IMO提供的第一道試題。
在平面上給定的點P0和△A1A2A3,且約定S≥4時,As=A s-3,構造點列P0,P1,P2,……,使得P k+1為點Pk繞中心A k+1順時針旋轉120°所到達的位置,k=0,1,2,……。求證:如果P1986=P0,則△A1A2A3為等邊三角形。
由中國科技大學常庚哲和吉林大學齊東旭共同命制。
1991第32屆IMO第3題,這是我國向IMO提供的第二道試題。
設S={1,2,3,……,280},求最小的自然數n,使得S的每個n元子集中都含有5個兩兩互素的數。
由南開大學李成章命制。
1992第33屆IMO第3題,這是我國向IMO提供的第三道試題。
給定空間中的九個點,其中任何四點都不共面,在每一對點之間都連有一條線段,這條線段可染為紅色或藍色,也可不染色。試求出最小的n值,使得將其中任意n條線段中的每一條任意地染為紅藍二色之一時,在這n條線段的集合中都必然包含有一個各邊同色的三角形。
由南開大學李成章命制。
1999年第40屆IMO第四題由我國台灣提供。
確定所有的正整數對(n,p),滿足:p是一個素數,n≤2p,且(p-1)n+1能夠被n p-1整除。
考試流程
現在的IMO每份試卷有6題,每題7分,滿分42分。
考試分兩天進行,每天連續進行4.5小時,考3道題目。賽事分兩日進行,每日參賽者有4.5小時來解決三道問題(由上午9時到下午1時30分)。
通常每天的第1題(即第1、4題)最淺,第2題(即第2、5題)中等,第3題(即第3、6題)最深。所有問題是由中學數學課程中的不同範疇中選出,通常是
組合數學、
數論、幾何和
代數、
不等式。解決這些問題,參賽者通常不需要更深入的數學知識(雖然大部分參賽者都有,而且實際上需要很多課程以外的數學知識和技巧),但通常要有異想天開的思維和良好的數學能力,才能找出解答。
評卷規則
比賽後有兩天批改答卷。每一題由各國領隊和副領隊及主辦國指定的協調員評改,商議出最後分數。領隊為參賽者向協調員儘量爭取分數,若他們未能達成一致結果,則交由主試委員會仲裁。最後定出金銀銅的分數線,於比賽閉幕禮頒獎。每道題7分,滿分為42分。
獎項設定
競賽設一等獎(金牌)、二等獎(銀牌)、三等獎(銅牌),比例大致為1:2:3;獲獎者總數不能超過參賽學生的半數。各屆獲獎的標準與當屆考試的成績有關。
成績統計
歷屆冠軍
歷屆IMO的主辦國,總分冠軍及參賽國(地區)數
年份 屆次 東道主 總分冠軍 參賽國家數
1959 1 羅馬尼亞 羅馬尼亞 7
1960 2 羅馬尼亞 前捷克斯洛伐克 5
1961 3 匈牙利 匈牙利 6
1962 4 前捷克斯洛伐克 匈牙利 7
1963 5 波蘭 前蘇聯 8
1964 6 前蘇聯 前蘇聯 9
1965 7 前東德 前蘇聯 8
1966 8 保加利亞 前蘇聯 9
1967 9 前南斯拉夫 前蘇聯 13
1968 10 前蘇聯 前東德 12
1969 11 羅馬尼亞 匈牙利 14
1970 12 匈牙利 匈牙利 14
1971 13 前捷克斯洛伐克 匈牙利 15
1972 14 波蘭 前蘇聯 14
1973 15 前蘇聯 前蘇聯 16
1974 16 前東德 前蘇聯 18
1975 17 保加利亞 匈牙利 17
1976 18 澳大利亞 前蘇聯 19
1977 19 南斯拉夫 美國 21
1978 20 羅馬尼亞 羅馬尼亞 17
1979 21 美國 前蘇聯 23
1981 22 美國 美國 27
1982 23 匈牙利 前西德 30
1983 24 法國 前西德 32
1984 25 前捷克斯洛伐克 前蘇聯 34
1985 26 芬蘭 羅馬尼亞 42
1986 27 波蘭 美國、前蘇聯 37
1987 28 古巴 羅馬尼亞 42
1988 29 澳大利亞 前蘇聯 49
1989 30 前西德 前蘇聯 50
1990 31 中國 中國 54
1991 32 瑞典 前蘇聯 56
1992 33 俄羅斯 中國 62
1993 34 土耳其 中國 65
1994 35 中國香港 美國 69
1995 36 加拿大 中國 73
1996 37 印度 羅馬尼亞 75
1997 38 阿根廷 中國 82
1998 39 中華台北 伊朗 84
1999 40 羅馬尼亞 中國、俄羅斯 81
2000 41 韓國 中國 82
2001 42 美國 中國 83
2002 43 英國 中國 84
2003 44 日本 保加利亞 82
2004 45 希臘 中國 85
2005 46 墨西哥 中國 98
2006 47 斯洛維尼亞 中國 104
2007 48 越南 俄羅斯 93
2008 49 西班牙 中國 103
2009 50 德國 中國 104
2010 51 哈薩克斯坦 中國 96
2011 52 荷蘭 中國 101
2012 53 阿根廷 韓國 103
2013 54 哥倫比亞 中國 208
2014 55 南非 中國 201
2015 56 泰國 美國104
2016 57 中國香港 美國109
2017 58 巴西 韓國 111
2018 59 羅馬尼亞 美國 107
2019 60 英國
2020 61 俄羅斯
最佳選手
歷屆國際奧林匹克競賽產生了很多優秀選手, 國際上最優秀的目前來看 當屬羅馬尼亞選手西普里安·馬諾勒斯庫, 他於1995年, 1996年, 1997年三年連續獲得國際奧數滿分, 全世界唯一的一個三次滿分 , 其中1996年是全世界唯一的一個, 研究數學成就巨大 。
另外, 還有俄羅斯 ,羅馬尼亞, 匈牙利等東歐國家 也有許多獲得過2次滿分的天才少年。
在國內, 有1991年和1992年兩次滿分的
羅煒, 現為博士後在浙江大學工作。 2002年和2003年均獲滿分的付雲皓, 2008年和2009年兩年滿分的
韋東奕。