勒貝格-康托爾函式

勒貝格-康托爾函式是由格奧爾格·康托爾創立的,他創立了現代集合論,是實數系以至整個微積分理論體系的基礎,還提出了良序概念的定義;康托爾確定了在兩個集合中的成員,其間一對一關係的重要性,定義了無限且有序的集合,並證明了實數比自然數更多。康托爾對這個定理所使用的證明方法,事實上暗示了“無限的無窮” 的存在。他定義了基數和序數及其算術。康托爾很清楚地自知自覺他的成果,富有極濃厚的哲學興趣。康托爾提出的超越數,最初被當時數學界同儕認為如此反直覺-甚至令人震驚-因而拒絕接受他的理論,且以利奧波德·克羅內克為首的眾多數學家長期攻擊。克羅內克反對代數數為可數的,而超越數為不可數的證明。

基本介紹

  • 中文名:勒貝格-康托爾函式
  • 領域:數學
數論,三角級數和序數,集合論,

數論,三角級數和序數

康托爾的前十篇論文題目是關於數論。在哈勒大學教授愛德華海涅的建議下,康托轉向分析。海涅提出了困惑著Peter Gustav Lejeune Dirichlet、Rudolf Lipschitz,Bernhard Riemann和海涅自己的問題:如何呈現三角級數的建構函式的唯一性質?康托爾在 1869年解決了這個難題,而在研究這個三角級數唯一定理的時候,他發現了超限序數,出現在對於三角級數的集合S,其下標為n的第n個索引的導出集合Sn之中。
1870 至 1872年之間康托爾發表了更多關於三角函式的論文,並且還將無理數定義為有理數的收斂序列。戴德金引用了這篇論文,並在他的論文中首次提出了戴德金切割的實數定義。即使康托爾革命性地以無限基數的概念來擴大集合概念的同時,他卻自相矛盾地反對同期數學分析學者 Otto Stolz 和 Paul du Bois-Reymond 的無限小理論;康托爾還發表了一個錯誤的“證明”,試圖證明無窮小量的不一致性。

集合論

一一對應和對角線證明方法
康托爾提出了通過一一對應的方法對無限集合的大小進行比較,並將能夠彼此建立一一對應的集合稱為等勢,即可以被認為是“一樣大”的。他引入了可數無窮的概念,用來指與自然數集合等勢的集合,並證明了有理數集合是可數無窮,而實數集合不是可數無窮,這表明無窮集合的確存在著不同的大小,他稱與實數等勢(從而不是可數無窮)的集合為不可數無窮。原始證明發表於 1874年,這個證明使用了較為複雜的歸納反證法。1891年他用對角線法重新證明了這個定理。另外,他證明了代數數集合是可數集,以及 n維空間與一維空間之間存在一一對應。在上述理論的基礎上,康托爾又系統地研究了序數理論,提出了良序定理,即可以給任何集合內的所有元素定義一個大小關係,使得任意兩個元素都可以比較大小,且該集合的任意子集都有最小元素。
連續統假設
康托爾晚年致力於證明他自己提出的連續統假設,即任意實數的無窮集合或者是可數無窮或者是不可數無窮,二者必居其一,但沒有成功。
絕對無限的,有序的定理和悖論

相關詞條

熱門詞條

聯絡我們