交換圖表

數學領域,尤其是範疇論中,通常使用以對象為頂點、態射為邊的交換圖表來直觀的表達一些性質,尤其是泛性質。

圖表中,複合連線任意兩個對象的不同路徑上的態射,所得的結果均相等,則稱此圖表可交換。同時,按照慣例,實線通常表示任意給定的態射,虛線則表示存在或唯一存在的態射。

基本介紹

  • 中文名:交換圖表
  • 外文名:Commutative diagram
簡介,範疇論,態射,泛性質,

簡介

數學領域,尤其是範疇論中,通常使用以對象為頂點、態射為邊的交換圖表來直觀的表達一些性質,尤其是泛性質。
圖表中,複合連線任意兩個對象的不同路徑上的態射,所得的結果均相等,則稱此圖表可交換。同時,按照慣例,實線通常表示任意給定的態射,虛線則表示存在或唯一存在的態射。

範疇論

範疇論數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的“物件”及“態射”。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。
範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函式。但需注意,範疇的物件不一定要是集合,態射也不一定要是函式;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可套用在這個數學概念之上。
範疇最簡單的例子之一為廣群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論計算機科學的某些領域中用於對應資料型別,而在數學物理中被用來描述向量空間
範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語“一般化的抽象廢話”,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。

態射

數學上,態射(morphism)是兩個數學結構之間保持結構的一種過程抽象。
最常見的這種過程的例子是在某種意義上保持結構的函式映射。例如,在集合論中,態射就是函式;在群論中,它們是群同態;而在拓撲學中,它們是連續函式;在泛代數(universal algebra)的範圍,態射通常就是同態
對態射和它們定義於其間的結構(或對象)的抽象研究構成了範疇論的一部分。在範疇論中,態射不必是函式,而通常被視為兩個對象(不必是集合)間的箭頭。不像映射一個集合的元素到另外一個集合,它們只是表示域(domain)和陪域(codomain)間的某種關係。
儘管態射的本質是抽象的,多數人關於它們的直觀(事實上包括大部分術語)來自於具體範疇的例子,在那裡對象就是有附加結構的集合而態射就是保持這種結構的函式。

泛性質

在數學的很多分支,經常用“在給定某些條件下存在唯一態射”這種形式的性質來定義一些構造。這種性質統稱為泛性質(英語:Universal property),有時也稱為萬有性範疇論研究泛性質。

相關詞條

熱門詞條

聯絡我們