一致最大功效檢驗

一致最大功效檢驗(uniformly most powerful test)亦稱一致最強檢驗。簡稱UMP,一種水平a檢驗。

在統計假設檢驗中,一致最大功效檢驗(UMP)是在給定大小α的所有可能測試中具有最大冪β的假設檢驗。 例如,根據奈曼 - 皮爾森引理,似然比檢驗是測試簡單(點)假設的一致最大功效檢驗。

基本介紹

  • 中文名:一致最大功效檢驗
  • 外文名:uniformly most powerful test
  • 學科:機率論
  • 別稱:一致最強檢驗
  • 英文縮寫:UMP
  • 相關名詞:奈曼 - 皮爾森引理
簡介,設定,正式定義,卡林魯賓定理,重要案例:指數族,舉例,

簡介

一致最大功效檢驗(uniformly most powerful test)亦稱一致最強檢驗。簡稱UMP,一種水平a檢驗。
在統計假設檢驗中,一致最大功效檢驗(UMP)是在給定大小α的所有可能測試中具有最大冪β的假設檢驗。 例如,根據奈曼 - 皮爾森引理,似然比檢驗是測試簡單(點)假設的一致最大功效檢驗。

設定

讓X表示從機率密度函式或機率質量函式的參數族中獲取的隨機向量(對應於測量)
,這取決於θ中未知的確定性參數。 參數空間θ被分成兩個不相交的集合θ0和θ1。 讓H0表示θ0中θ∈θ0的假設,並且H1表示θ1中θ∈θ1的假設。 假設的二進制測試使用測試函式φ(x)執行。
一致最大功效檢驗
這意味著
有效,H1就有效,並且如果
有效,H0就有效。注意
是測量空間的不相交的覆蓋。

正式定義

一個測試函式φ(x)是大小為α的一致最大功效檢驗,對於任何其他測試函式
滿足
一致最大功效檢驗
我們有
一致最大功效檢驗

卡林魯賓定理

卡林魯賓定理可以被認為是尼曼 - 皮爾森引理對複合假說的延伸。考慮具有由標量參數θ參數化的機率密度函式的標量測量,並定義似然比
一致最大功效檢驗
如果 l(x)單調不減少,則在x中,對於任何對θ1>θ0(意味著x越大,H1的可能性越大),則閾值測試:
一致最大功效檢驗
其中x0被選擇為使得
一致最大功效檢驗
是測試尺寸α的一致最大功效檢驗測試H0:θ≤θ0,H1:θ>θ0。
請注意,完全相同的測試也是一致最大功效檢驗用於測試H0:θ=θ0,H1:θ>θ0。

重要案例:指數族

儘管由於對標量參數和標量測量的限制,卡林 - 魯賓定理可能看起來很弱,但事實證明存在許多問題。 特別地,具有機率密度函式或機率質量函式的一維指數族,
一致最大功效檢驗
在足夠的統計量T(x)中具有單調非遞減似然比。

舉例

讓X={X0,X1......Xn}表示常態分配 N維隨機向量與平均值θm和協方差矩陣R,則
一致最大功效檢驗
這正是前面部分所示的指數族的形式,具有足夠的統計量,
一致最大功效檢驗
因此,我們得出結論,
一致最大功效檢驗
是測試尺寸α的一致最大功效檢驗測試H0:θ≤θ0,H1:θ>θ0。

相關詞條

熱門詞條

聯絡我們