一致最大功效無偏檢驗

一致最大功效無偏檢驗

一致最大功效無偏檢驗(uniformly most powerful unbiased test)是指在一切無偏檢驗中兩類錯誤機率都一致小的檢驗。在許多重要場合都存在—致最大功效無偏檢驗。

基本介紹

  • 中文名:一致最大功效無偏檢驗
  • 外文名:uniformly most powerful unbiased test
  • 所屬學科:數學
  • 所屬問題:統計學(統計假設檢驗)
  • 相關概念:無偏檢驗,功效函式等
基本概念,例題解析,

基本概念

對於區分假設
的檢驗問題,如果存在一致最大功效檢驗,則自然採用這樣的檢驗,因為它是最優的。然而,在許多重要的場合,不存在一致最大功效檢驗,這時,需要給所考慮的檢驗加上某些很自然的限制,從而縮小選擇的範圍,並且在縮小了的範圍內選擇一致最大功效檢驗,檢驗的無偏性就是一個很自然的要求。在許多重要的場合,雖然一致最大功效檢驗並不存在,然而一致最大功效無偏檢驗總是存在的。
無偏檢驗稱檢驗V為區分假設
無偏檢驗,如果它的功效函式
,具有下面的性質:
如果無偏檢驗V的水平為α(0<α<1),則
一致最大功效無偏檢驗稱無偏檢驗V*為區分假設
的一致最大功效無偏檢驗,如果對於其它任何無偏檢驗V,有
其中
分別為檢驗V*和檢驗V的功效函式。一般,先選定一個α(0<α<1)作為檢驗的顯著性水平,然後在一切α-水平的無偏檢驗中尋求一α-水平一致最大功效檢驗V*,使對於其它任何α-水平的無偏檢驗V,有

例題解析

已知
,關於未知參數
有兩個假設
1)不存在區分假設
的α-水平一致最大功效檢驗。事實上,對於任意α(0<α<1),令
其中
,而
是標準常態分配之
-水平雙側分位數。由功效函式的定義,容易驗證檢驗V1和檢驗V2的功效函式分別為
其中
。此外,易見
是減函式,而
是增函式(見圖1)。
圖1圖1
檢驗V1是區分
的α-水平一致最大功效檢驗;檢驗V2是區分
的α-水平一致最大功效檢驗。由此可見,對於任意α不存在區分假設
的α-水平一致最大功效檢驗。
2)檢驗V1和檢驗V2都不是無偏的,因為(見圖1)
然而任何無偏檢驗的功效函式都應滿足
,若
3)考慮檢驗V*:
其中
,而
是標準常態分配α-水平雙側分位數。
a)檢驗V*是區分假設
的α-水平無偏檢驗。事實上,由功效函式的定義,易見(見圖1)它的功效函式為:
特別,
。此外,由於當
遞減,而當
遞增,可見當
時,
,從而檢驗V*是無偏的。
b)可以證明檢驗V*是α-水平一致最大功效無偏檢驗。為證明這一事實需要用到更多的知識,故在此不作介紹.圖1是功效函式
的示意圖。

相關詞條

熱門詞條

聯絡我們