腦機接口(BCI(腦機接口技術))

腦機接口(生物物理學-生物控制論概念)

BCI(腦機接口技術)一般指本詞條

本詞條是多義詞,共10個義項
更多義項 ▼ 收起列表 ▲

腦機接口(Brain-Machine Interface,BMI;Brain Computer Interface,BCI),指在人或動物大腦與外部設備之間創建的直接連線,實現腦與設備的信息交換。這一概念其實早已有之,但直到上世紀九十年代以後,才開始有階段性成果出現。

腦機接口技術是一種變革性的人機互動技術。其作用機制是繞過外周神經和肌肉,直接在大腦與外部設備之間建立全新的通信與控制通道。它通過捕捉大腦信號並將其轉換為電信號,實現信息的傳輸和控制。

2023年,科學家們開發了可以將神經信號轉化為接近正常對話速度的語句的腦機接口。全球首例非人靈長類動物介入式腦機接口試驗在北京獲得成功,促進了介入式腦機接口從實驗室前瞻性研究向臨床套用邁進。隨著腦科學、人工智慧和材料學的發展,腦機接口技術的不斷進步,它將在提高患者生活質量、促進個性化和精準化醫療方面發揮重要的作用。2024年1月29日,首例人類接受了腦機接口公司Neuralink的植入物,目前恢復良好。初步結果顯示神經元尖峰檢測(neuron spike detection)表現出良好的前景。

2024年,中國團隊成功研發65000通道腦機接口晶片。

2024年5月19日,據IT之家訊息,埃隆・馬斯克日前宣布,腦機接口公司 Neuralink 正在接收第二位植入者申請,該試驗可以實現意念控制手機和電腦。

基本介紹

  • 中文名:腦機接口
  • 外文名:Brain Computer Interface 
  • 所屬學科:生物物理學_生物控制論_神經工程 
  • 簡稱:BMI、BCI 
  • 也稱:大腦連線埠
程式簡介,神經修復,延伸閱讀,早期工作,運動功能,感覺功能,接口研究,研究進程,非侵入式,腦電圖,細胞培養,會議論壇,功能套用,早期融資,成果轉化,倫理問題,所獲榮譽,大事記,

程式簡介

腦機接口,有時也稱作“大腦連線埠”direct neural interface或者“腦機融合感知”brain-machine interface,它是在人或動物腦(或者腦細胞的培養物)與外部設備間建立的直接連線通路。在單向腦機接口的情況下,計算機或者接受腦傳來的命令,或者傳送信號到腦(例如視頻重建),但不能同時傳送和接收信號。而雙向腦機接口允許腦和外部設備間的雙向信息交換。
腦機接口是一種在腦與外部設備之間建立直接的通信渠道。其信號來自中樞神經系統,傳播中不依賴於外周的神經與肌肉系統。常用於輔助、增強、修復人體的感覺–運動功能或提升人機互動能力。
在該定義中,“腦”一詞意指有機生命形式的腦或神經系統,而並非僅僅是“mind”。“機”意指任何處理或計算的設備,其形式可以從簡單電路到矽晶片。
腦機接口
腦機接口示意圖
對腦機接口的研究已持續了超過40年了。20世紀90年代中期以來,從實驗中獲得的此類知識顯著增長。在多年來動物實驗的實踐基礎上,套用於人體的早期植入設備被設計及製造出來,用於恢復損傷的聽覺視覺和肢體運動能力。研究的主線是大腦不同尋常的皮層可塑性,它與腦機接口相適應,可以像自然肢體那樣控制植入的假肢。在當前所取得的技術與知識的進展之下,腦機接口研究的先驅者們可令人信服地嘗試製造出增強人體功能的腦機接口,而不僅僅止於恢復人體的功能。這種技術在以前還只存在於科幻小說之中。

神經修復

神經修復是神經科學中和神經的修復相關的領域,即使用人工裝置(假體)替換掉原有功能已削弱的部分神經或感覺器官。神經假體最廣泛的套用是人工耳蝸,截止到2006年世界上已有大約十萬人植入。也有一些神經假體是用於恢復視力的,如人工視網膜,迄今在這方面的工作僅僅局限於將人工裝置直接植入腦部。
腦機接口和神經修復的區別主要從字面上就可見其端倪:“神經修復”通常指臨床上使用的裝置,而許多現有的腦機接口仍然是實驗性質的。實踐上講神經假體可以和神經系統的任意部分相連線,如外周神經系統;而“腦機接口”通常指一類範圍更窄的直接與腦相連線的系統。
由於目標和實現手段的相似性,“神經修復”和“腦機接口”兩術語經常可以通用。神經修復和腦機接口嘗試達到一個共同的目標,如恢復視覺、聽覺、運動能力,甚至是認知的能力。兩者都使用類似的實驗方法和外科手術技術。

延伸閱讀

一聽到“腦機接口”(BMI),也許會讓人以為身處科幻電影中,認為這是一種能夠升級人類能力的技術。例如,將人的大腦與計算機連線,通過思想隨心所欲地操縱機器;或者藉助計算機將人與人的大腦相連,使之無需語言就能彼此溝通交流;等等。實際上,腦機接口研究的最初目的是有效地恢復患者因疾病或外傷喪失的運動功能和交流能力,它是一項套用於醫療、康復、護理等領域的技術。
腦機接口可分為感覺型(輸入型)和運動型(輸出型)兩種。
感覺型腦機接口,它是將輸入到人體感測器的外界信息轉換(編碼)為電信號,通過植入到腦內的電極將該信號傳遞給感覺神經,從而實現重建感覺功能。例如,對於存在聽覺障礙的患者,在其耳部植入小型傳聲器,將傳聲器採集到的聲音信息通過嵌入聽神經的電極傳入腦內(人工耳蝸),就可以達到恢復聽力的效果。在臨床上,這種技術已經套用於佩戴助聽器改善聽力效果不佳的患者身上。
運動型腦機接口,簡單來說,它是通過思維來驅動機器。當要做某個動作時,計算機通過讀取大腦運動區的信號,就可以直接驅動機器。一般情況下,腦機接口指的是運動型腦機接口,多數人想像中的腦機接口也基本上是運動型的。
腦機接口技術中,有向人體植入某種裝置的侵入式,也有通過戴在頭部並從體外讀取腦的信息或者向腦傳輸信號的非侵入式。人工耳蝸就是侵入式腦機接口的例子。
腦機接口技術預計會得到快速發展。在可見的未來,有可能實現腦和外部網路的直接連線。例如,將類似超小型智慧型手機的設備植入腦內,從而實現不用手持而是用腦對其直接操作。
如果發展到腦與外部網路直接連線,則個人的思考、決策會在更大的程度上受到來自第三者或人工智慧發出的信息的影響;自己腦內思考著的信息如果可能泄露到外部,則會引起隱私方面的擔憂。有專家指出,無論採取什麼樣的形式,腦和外部網路的連線,都需要慎重對待。

早期工作

運動功能

在面向運動功能的腦機接口方面,發展算法重建運動皮層神經元對運動的控制,該研究可以回溯到20世紀70年代。Schmidt, Fetz和Baker領導的小組在20世紀70年代證實了猴可以在閉環的操作性條件作用(closed-loop operant conditioning)後快速學會自由地控制初級運動皮層中單個神經元的放電頻率。20世紀80年代,約翰斯·霍普金斯大學的Apostolos Georgopuolos找到了獼猴的上肢運動的方向和運動皮層中單個神經元放電模式的關係。他同時也發現,一組分散的神經元也能夠編碼肢體運動。
上世紀九十年代中期以來,面向運動的腦機接口經歷了迅速的發展。若干研究小組已經能夠使用神經集群記錄技術實時捕捉運動皮層中的複雜神經信號,並用來控制外部設備。其中主要包括了Richard Andersen、John Donoghue、Phillip Kennedy、Miguel Nicolelis和Andrew Schwartz等人的研究小組。

感覺功能

迄今人類已經能夠修復或者正在嘗試修復的感覺功能包括聽覺、視覺和前庭感覺。
人工耳蝸是迄今為止最成功、臨床套用最普及的腦機接口。
視覺修復技術尚在研發之中。這方面的研究和套用落後於聽覺同能的主要原因是視覺傳遞信息量的巨大和外周感覺器官(視網膜)和中樞視覺系統在功能上的相對複雜性。具體參見視覺假體。
美國約翰·霍普金斯大學的Della Santina及其同事開發出一種可以修復三維前庭感覺的前庭植入物。

接口研究

研究進程

侵入式腦機接口主要用於重建特殊感覺(例如視覺)以及癱瘓病人的運動功能。此類腦機接口通常直接植入到大腦的灰質,因而所獲取的神經信號的質量比較高。但其缺點是容易引發免疫反應愈傷組織(疤),進而導致信號質量的衰退甚至消失。
視覺腦機接口方面的一位先驅是William Dobelle。他的皮層視覺腦機接口主要用於後天失明的病人。1978年,Dobelle在一位男性盲人Jerry的視覺皮層植入了68個電極的陣列,並成功製造了光幻視(Phosphene)。該腦機接口系統包括一個採集視頻的攝像機,信號處理裝置和受驅動的皮層刺激電極。植入後,病人可以在有限的視野內看到灰度調製的低解析度、低刷新率點陣圖像。該視覺假體系統是攜帶型的,且病人可以在不受醫師和技師幫助的條件下獨立使用。
2002年,Jens Naumann成為了接受Dobelle的第二代皮層視覺假體植入的16位病人中的第一位。第二代皮層視覺假體的特點是能將光幻視更好地映射到視野,創建更穩定均一的視覺。其光幻視點陣覆蓋的視野更大。接受植入後不久,Jens就可以自己在研究中心附近慢速駕車漫遊。
針對“運動神經假體”的腦機接口方面,Emory大學的Philip Kennedy和Roy Bakay最先在人植入了可獲取足夠高質量的神經信號來模擬運動的侵入性腦機接口。他們的病人Johnny Ray患有腦幹中風導致的鎖閉綜合症。Ray在1998年接受了植入,並且存活了足夠長的時間來學會用該腦機接口來控制電腦游標。
2005年,Cyberkinetics公司獲得美國FDA批准,在九位病人進行了第一期的運動皮層腦機接口臨床試驗。四肢癱瘓的Matt Nagle成為了第一位用侵入式腦機接口來控制機械臂的病人,他能夠通過運動意圖來完成機械臂控制、電腦游標控制等任務。其植入物位於前中回的運動皮層對應手臂和手部的區域。該植入稱為BrainGate,是包含96個電極的陣列。
部分侵入式腦機接口一般植入到顱腔內,但是位於灰質外。其空間解析度不如侵入式腦機接口,但是優於非侵入式。其另一優點是引發免疫反應和愈傷組織的幾率較小。
皮質腦電圖(ECoG:ElectroCorticoGraphy)的技術基礎和腦電圖的相似,但是其電極直接植入到大腦皮層上,硬腦膜下的區域。華盛頓大學(聖路易斯)的Eric Leuthardt和Daniel Moran是最早在人體試驗皮層腦電圖的研究者。根據一則報導,他們的基於皮層腦電圖的腦機接口能夠讓一位少年男性病人玩電子遊戲。同時該研究也發現,用基於皮層腦電圖的腦機接口來實現多於一維的運動控制是比較困難的。
基於“光反應成像”的腦機接口尚處在理論階段。其概念是在顱腔內植入可測量單神經元興奮狀態的微型感測器,以及受其驅動的微型雷射源。可用該雷射源的波長或時間模式的變化來編碼神經元的狀態,並將信號傳送到顱腔外。該概念的優點是可在感染、免疫反應和愈傷反應的幾率較小的條件下長時間監視單個神經元的興奮狀態。

非侵入式

和侵入式腦機接口一樣,研究者也使用非侵入式的神經成像術作為腦機之間的接口在人身上進行了實驗。用這種方法記錄到的信號被用來加強肌肉植入物的功能並使參加實驗的志願者恢復部分運動能力。雖然這種非侵入式的裝置方便佩戴於人體,但是由於顱骨對信號的衰減作用和對神經元發出的電磁波的分散和模糊效應,記錄到信號的解析度並不高。這種信號波仍可被檢測到,但很難確定發出信號的腦區或者相關的單個神經元的放電。

腦電圖

作為有潛力的非侵入式腦機接口已得到深入研究,這主要是因為該技術良好的時間解析度、易用性、便攜性和相對低廉的價格。但該技術的一個問題是它對噪聲的敏感,另一個使用EEG作為腦機接口的現實障礙是使用者在工作之前要進行大量的訓練。這方面研究的一個典型例子是德國圖賓根大學的Niels Birbaurmer於1990年代進行的項目。該項目利用癱瘓病人的腦電圖信號使其能夠控制電腦游標。經過訓練,十位癱瘓病人能夠成功地用腦電圖控制游標。但是游標控制的效率較低,在螢幕上寫100個字元需要1個小時,且訓練過程常耗時幾個月。在Birbaumer的後續研究中,多個腦電圖成分可被同時測量,包括μ波和β波。病人可以自主選擇對其最易用的成分進行對外部的控制。
與上述這種需要訓練的EEG腦機接口不同,一種基於腦電P300信號的腦機接口不需要訓練,因為P300信號是人看到熟識的物體是非自主地產生的。美國羅切斯特大學的Jessica Bayliss的2000年的一項研究顯示,受試者可以通過P300信號來控制虛擬現實場景中的一些物體,例如開關燈或者操縱虛擬轎車等。
1999年,美國凱斯西留地大學由Hunter Peckham領導的研究組用64導腦電圖恢復了四肢癱瘓病人Jim Jatich的一定的手部運動功能。該技術分析腦電信號中的β波,來分類病人所想的向上和向下兩個概念,進而控制一個外部開關。除此以外,該技術還可以使病人控制電腦游標以及驅動其手部的神經控制器,來一定程度上回復運動功能。
套用人工神經網路,計算機可以分擔病人的學習負擔。Fraunhofer學會2004年用這一技術顯著降低了腦機接口訓練學習所需的時間。
Eduardo Miranda的一系列試驗旨在提取和音樂相關的腦電信號,使得殘疾病人可以通過思考音樂來和外部交流,這種概念稱為“腦聲機”(encephalophone)。

細胞培養

細胞培養物的腦機接口是動物(或人)體外的培養皿中的神經組織和人造設備之間的通訊機制。這方面研究的焦點是建造具有問題解決能力的神經元網路,進而促成生物式計算機。研究者有時在半導體晶片上培養神經組織,並且從這些神經細胞記錄信號或對其進行刺激。這類研究常稱為“神經電子學”(Neuroelectronics)或“神經晶片”(Neurochips)。1997年,加州理工Jerome Pine和Michael Maher的團隊最先宣稱研製成功神經晶片。該晶片集成了16個神經元。
2003年,美國南加州大學的Theodore Berger小組開始研製能夠模擬海馬功能的神經晶片。該小組的目標是將這種神經晶片植入大鼠腦內,使其稱為第一種高級腦功能假體。他們之所以選擇海馬作為研究對象為其高度有序的組織以及豐富的研究文獻。海馬體的功能與記憶生成和長期記憶有關。
佛羅里達大學的Thomas DeMarse用提取自大鼠腦的包含25000個神經元的培養物來操控一個F-22戰鬥機模擬程式。這些神經元提取自大腦皮層,離體以後,它們在培養皿上迅速集結成活的神經元網路,並且與60個電極通訊,來控制戰鬥機的上下和左右搖擺運動。該項目的主要目的是研究人類的腦在細胞層面上如何學習特定的計算任務。

會議論壇

2022年11月25日至30日,2022中關村論壇將在北京舉辦。論壇將探討腦機接口。
2024年3月3日,參加第十四屆全國人民代表大會的全國人大代表、高德紅外董事長黃立在接受採訪時建議,一是完善植入式腦機接口法律法規體系,建立相關技術標準;二是鼓勵腦機接口產品臨床試驗、上市體制機制創新,加速推進腦機接口產業化進程;三是建設國家級腦科學技術創新中心,創辦綜合性醫工結合平台。

功能套用

腦磁圖(MEG)以及功能核磁共振成像(fMRI)都已成功實現非侵入式腦機接口。例如在一項研究中,病人利用生物反饋技術可以用改變fMRI所檢測到的腦部血流信號來控制桌球運動。也有人用fMIR信號來準實時地控制機械臂,這一控制的延遲大位7秒左右。
一些實驗室已實現從猴和大鼠的大腦皮層上記錄信號以便操作腦機接口來實現運動控制。實驗讓猴只是通過回想給定的任務(而沒有任何動作發生)來操縱螢幕上的計算機游標並且控制機械臂完成簡單的任務。另外在貓上進行的研究對視覺信號進行了解碼。
2023年5月4日,由南開大學段峰教授團隊牽頭的全球首例非人靈長類動物介入式腦機接口試驗在北京獲得成功。
2023年8月23日,《Nature》發表的論文中,加州大學開發出的腦機技術,將大腦信號轉為文本、語音和表情,加拿大女性安失語了18年可以再次“說話”了。
2023年10月,發表在最新一期《科學進展》上的一項研究結果顯示,美國約翰斯·霍普金斯大學開發出一種治療漸凍症ALS)的腦機接口(BCI),其能在3個月內保持90%的準確率,且無需重新訓練或重新校準算法。
2024年1月30日,媒體報導,據國外社交媒體平台顯示,馬斯克表示:人類首次接受腦機接口(Neuralink)晶片植入,植入者恢復良好。

早期融資

2022年1月11日,成立數月的腦虎科技(NeuroXess)宣布完成9700萬元的天使輪及Pre-A輪融資,這是國內腦機接口領域最大規模的早期融資,主要投資機構包括盛大、紅杉資本、涌鏵等。
憑藉去2021世界人工智慧大會最高獎的原創核心技術,腦虎科技對標美國企業家埃隆·馬斯克的腦機接口公司Neuralink,聚焦全球範圍非常稀缺的侵入式腦機接口設備研發。

成果轉化

Cybernetics公司
John Donoghue及其同事創立了Cybernetics公司,宗旨是推動實用的人類腦機接口技術的發展。該公司目以Cybernetics神經技術公司為名在美國股市上市。BrainGate是該公司生產的電極陣列,該產品基於美國猶他大學的Richard Normann研發的“猶他”電極陣列。
Neural Signals公司
Philip Kennedy創立了Neural Signals公司。該公司生產的腦機接口設備使用玻璃錐內含的蛋白質包裹的微電極陣列,旨在促進電極和神經元之間的耦合。該公司除了生產侵入式腦機接口產品,還銷售一種可回復言語功能的植入設備。
2004年為止,William Dobelle創建的公司已經在16位失明病人內植入了初級視皮層視覺假體。該公司仍在繼續研發視覺植入物,但這類產品尚沒有獲得FDA的批准,因而不能在美國境內使用於人類。

倫理問題

關於腦機接口的倫理學爭論尚不活躍,動物保護組織也對這方面的研究關注也不多。這主要是因為腦機接口研究的目標是克服多種殘疾,也因為腦機接口通常給予病人控制外部世界的能力,而不是被動接受外部世界的控制。(當然視覺假體、人工耳蝸等感覺修復技術是例外。)
有人預見,未來當腦機接口技術發展到一定程度後,將不但能修復殘疾人的受損功能,也能增強正常人的功能。例如深部腦刺激(DBS)技術和RTMS等技術可以用來治療抑鬱症和帕金森氏病,將來也可能可以用來改變正常人的一些腦功能和個性。又例如,上文提及的海馬體神經晶片將來可能可以用來增強正常人的記憶。這可能將帶來一系列關於“何為人類”、“心靈控制”的問題爭論。

所獲榮譽

2023年9月,入選2023年十大黑科技榜單。
2023年12月,腦機接口入選“2023年度十大科技名詞”。

大事記

Phillip Kennedy及其同事用錐形營養性(neurotrophic-cone)電極植入術在猴上建造了第一個皮層內腦機接口。
1999年,哈佛大學的Garrett Stanley試圖解碼貓的丘腦外側膝狀體內的神經元放電信息來重建視覺圖像。他們記錄了177個神經元的脈衝列,使用濾波的方法重建了向貓播放的八段視頻,從重建的結果中可以看到可辨認的物體和場景。
杜克大學的Miguel Nicolelis是支持用覆蓋廣大皮層區域的電極來提取神經信號、驅動腦機接口的代表。他認為,這種方法的優點是能夠降低單個電極或少量電極採集到的神經信號的不穩定性和隨機性。Nicolelis在1990年代完成在大鼠的初步研究後,在夜猴內實現了能夠提取皮層運動神經元的信號來控制機器人手臂的實驗。到2000年為止,Nicolelis的研究組成功實現了一個能夠在夜猴操縱一個遊戲桿來獲取食物時重現其手臂運動的腦機接口。這個腦機接口可以實時工作。它也可以通過網際網路遠程操控機械手臂。不過由於猴子本身不接受來自機械手臂的感覺反饋,這類腦機接口是開環的。Nicolelis小組後來的工作使用了恆河猴
其它設計腦機接口算法和系統來解碼神經元信號的實驗室包括布朗大學的John Donoghue、匹茲堡大學的Andrew Schwartz、加州理工的Richard Anderson。這些研究者的腦機接在某一時刻使用的神經元數為15-30,比Nicolelis的50-200個顯著要少。Donoghue小組的主要工作是實現恆河猴對計算機螢幕上的游標的運動控制來追蹤視覺目標。其中猴子不需要運動肢體。Schwartz小組的主要工作是虛擬現實的三維空間中的視覺目標追蹤,以及腦機接口對機械臂的控制。這個小組宣稱,他們的猴子可以通過腦機接口控制的機械臂來餵自己吃西葫蘆。Anderson的小組正在研究從後頂葉的神經元提取前運動信號的腦機接口。此類信號包括實驗動物在期待獎勵時所產生信號。
除了以上所提及的這些用於計算肢體的運動參數的腦機接口以外,還有用於計算肌肉的電信號(肌電圖)的腦機接口。此類腦機接口的一個套用前景是通過刺激癱瘓病人的肌肉來重建其自主運動的功能。
2006年,布朗大學研究團隊完成首個大腦運動皮層腦機接口設備植入手術,能夠用來控制滑鼠。
2008年,匹茲堡大學神經生物學家宣稱利用腦機接口,猴子能用操縱機械臂給自己餵食——這標誌著該技術發展已經容許人們將動物腦與外部設備直接相連。
2012年,腦機接口設備已能夠勝任更複雜和廣泛的操作,得以讓癱瘓病人對機械臂進行操控,自己喝水、吃飯、打字與人交流。
2014年巴西世界盃開幕式,高位截癱青年Juliano Pinto在腦機接口與人工外骨骼技術的幫助下開出一球。
2016年,Nathan Copeland用意念控制機械手臂和美國總統歐巴馬握手。
2019年1月,Chmielewski作為約翰斯·霍普金斯大學一項腦機接口研究的參與者,通過一次長達10小時的手術,將六個微電極陣列(MEA)植入大腦兩側。隨後,研究者一直試圖通過不斷的改善和訓練,讓他獲得同時控制兩個假肢的能力。
2020年8月29日,埃隆·馬斯克自己旗下的腦機接口公司Neuralink舉行發布會,找來“三隻小豬”向全世界展示了可實際運作的腦機接口晶片和自動植入手術設備。
2022年3月,中國神經外科領域的一項新突破,腦機接口柔性電極技術在世界頂級學術期刊《科學》雜誌上發表。這項突破是一種腦機接口柔性電極技術,由首都醫科大學附屬北京天壇醫院研發,是提高手術精準度、保護神經功能的關鍵技術。該技術將僅有2微米大小的電極點組成的新型柔性電極,通過手術放到大腦上,幫助醫生更精確“看”到大腦內部神經等,從而最大限度保護大腦功能。
2022年6月25日,中國自主研發的國內首款介入式腦機接口完成動物試驗。
2022年12月,馬斯克“腦機接口”研究,涉嫌違反美國動物福利法規定,被曝接受調查。
2023年5月29日訊息,馬斯克的Neuralink對全球發布震撼宣言:腦機接口實驗的首次人體臨床研究,已獲美國食品和藥物管理局(FDA)批准。
2023年9月,工業和信息化部印發通知,組織開展2023年未來產業創新任務揭榜掛帥工作。揭榜任務內容為面向元宇宙、人形機器人、腦機接口、通用人工智慧4個重點方向。
2023年,史丹福大學團隊開發的腦機接口裝置,能將大腦活動解碼為語言,展示了在幫助嚴重癱瘓人群恢復溝通能力方面的技術進步;約翰斯·霍普金斯大學開發出一種治療漸凍症的腦機接口,其能在3個月內保持90%的準確率,且無需重新訓練或重新校準算法。
2024年1月29日,首例人類接受了腦機接口公司Neuralink的植入物,目前恢復良好。初步結果顯示神經元尖峰檢測(neuron spike detection)表現出良好的前景。
2024年1月29日,聯合團隊召開臨床試驗階段總結會,宣布首例患者腦機接口康復取得突破性進展。
2024年2月21日報導,馬斯克於在X上的一場直播活動中透露了被試的最新現狀:“(被試)狀況良好,似乎已經康復,沒有發現任何不良影響,並且能夠僅通過思維移動和控制螢幕上的滑鼠。”
2024年2月,首都醫科大學附屬北京天壇醫院神經外科賈旺教授團隊聯合清華大學洪波教授團隊,利用微創腦機接口技術首次成功幫助高位截癱患者實現意念控制游標移動,這意味著中國在腦機接口領域取得新突破。
2024年3月,清華大學科研團隊公布了兩個案例,兩位高位截癱患者分別通過無線微創腦機接口實現了意念控制游標移動、意念控制手套外骨骼持握,其中一名患者四肢癱瘓14年來,第一次實現了“用手喝水”。
2024年3月8日,全國人大代表、武漢高德紅外股份有限公司董事長黃立在北京介紹,他帶領中華腦機接口公司團隊成功研發65000通道雙向的腦機接口晶片,居於國際領先水平。
2024年5月19日,據IT之家訊息,埃隆・馬斯克日前宣布,腦機接口公司 Neuralink 正在接收第二位植入者申請,該試驗可以實現意念控制手機和電腦。

相關詞條

熱門詞條

聯絡我們