黎定仕

黎定仕

黎定仕,男,博士,副教授,博士生導師,現任職於西南交通大學

基本介紹

  • 中文名:黎定仕
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:微分動力系統
  • 任職院校西南交通大學
個人經歷,主講課程,研究方向,學術成果,

個人經歷

2006和2009分別畢業於中國礦業大學計算數學和套用數學專業,2012年於四川大學動力系統方向博士畢業,2012起在西南交大工作至今, 其中2014.9-2015.9受國家留學基金委資助訪問美國楊伯翰大學。

主講課程

(1) 數學物理方程
(2) 隨機過程
(4) 泛函分析
(5) 數學分析

研究方向

(1)微分動力系統
(2)隨機控制
(3)無窮維隨機動力系統

學術成果

現已主持國家自然科學基金項目2項,主研國家自然科學基金項目多項.以第一或通訊作者身份發表SCI論文數十篇,其中包括J. Differential Equation, Discrete Contin. Dyn. Syst.-A.,Discrete Contin. Dyn. syst.-B,J.Math.Phys.等國際專業刊物.
主持的科研項目:
脈衝隨機泛函微分方程周期解的存在性, 國家自然科學基金天元專項, 主持, 結題.
薄區域上無窮維隨機動力系統的動力學行為, 國家自然科學基金青年基金, 主持,在研。
論文
[1]DingshiLi, BixiangWang, XiaohuWang,Limitingbehaviorofnon-autonomous stochasticreactiondiffusionequationsonthindomains.J. Differential Equations262(2017), 
[2]Anhui Gu, Dingshi Li(通訊作者), Bixiang Wang, Han Yang, Regularity of random attractors for fractional stochastic reaction diffusion equations on Rn. J. Differential Equations262(2018), 
[3]Dingshi Li,Xiaohu Wang,Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains,Discrete Contin. Dyn. Syst. -B , Accepted.
[4]Dingshi, Li, LinShi,Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay.J. Math. Phys.59 (2018), 
[5]Dingshi Li, Lin Shi,Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with timevarying delays in the delay, Journal of Difference Equation and Applications.
[6]DingshiLi,kening Lu, Bixiang, Wang, Xiaohu, Wang,Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains.Discrete Contin. Dyn. Syst.-A38 (2018), no. 1,187-208.
[7]Dingshi Li, Bing Li, Global Mean Square Exponential Stability of Impulsive Non-autonomous Stochastic Neural Networks with Mixed Delays, Neural Process Letter 44(2016), 751-764.
[8]Dingshi Li, Guiling Chen, Impulses-induced p-exponential input-to-state stability for a class of stochastic delayed partial differential equations, International Journal of Control,.
[9]GuilingChen,DingshiLi(通訊作者), van Gaans Onno;Verduyn Lunel, SjoerdStability results for nonlinear functional differential equations using fixed point methods.Indag. Math. (N.S.)29 (2018), 
[10]DingshiLi,XiaohuWang,DaoyiXu,Existenceandglobalpexponential stability ofperiodicsolutionforimpulsivestochasti cneuralnetworkswithdelays.Nonlinear Anal. Hybrid Syst.6 (2012), 847–858.
[11] Xinhong Zhang, Ke Wang, Dingshi Li(通訊作者), Stochastic periodic solutions of stochastic differential equations driven by Levy process,Journal of Mathematic Analysis and Application, 430 (2015) 231-242.
[12] Dingshi Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Statistics & Probability Letters, 83(2013) 580-583.
[13]DingshiLi, DanhuaHe,DaoyiXu,Meansquareexponentialstability ofimpulsivestochasticreaction-diffusionCohen-Grossbergneuralnetworks withdelays.Math. Comput. Simulation82 (2012), 1531-1543.
[14]Dingshi Li, Xiaoming Fan,Exponential stability ofimpulsive stochastic partial differential equations with delays,Statistics ProbabilityLetters, 126 (2017), 185-192.
[15]Guiling, Chen,Dingshi, Li(通訊作者),Onno, van Gaans,Sjoerd, Verduyn Lunel,Stability of nonlinear neutral delay differential equations with variable delays.Electron. J. Differential Equations2017, 
[16]Dingshi Li, Guiling Chen,Exponential stability of a class ofimpulsive stochastic delay partial differential equations driven by a fractionalBrownian motion, InternationalJournalofControl,Automation,andSystems, 15(4) (2017) 1561-1568.
[17] Dingshi Li, Daoyi Xu, Attracting and quasi-invariant sets of stochastic neutral partial functional differential Equations,Acta Mathematica Scientia. 33B(2013), 578-588.
[18] Dingshi Li, Daoyi Xu, Existence and global attractivity of periodic solution for impulsive stochastic Volterra-Levin equations, Electronic Journal of Qualitative Theory of Differential Equations, 46 (2012) 1-12.
[19] Dingshi Li,Shujun Long,Difference inequality for attracting and quasi-invariant sets for a class of impulsive stochastic difference equations with continuous time,Mathematical Inequalities &Applications,16(2013), 935-945.
[20] Dingshi Li,Chao Ma,Attractor and stochastic boundedness for stochastic infinte delay neural networks with markovian switching, Neural Process Letter,40(2014), 127-142.
[21] Dingshi Li, Daoyi Xu, Perodic solutions of stochastic delay differential equations and applications to Logistic equations and neural networks, J. Korean Math. Soc. 50 (2013), 1165-1181.

相關詞條

熱門詞條

聯絡我們