《離散數學(第3版)》是由屈婉玲、耿素雲、張立昂編著,2014年清華大學出版社出版的普通高等教育“十一五”國家級規劃教材、普通高等教育精品教材、21世紀大學本科計算機專業系列教材。該教材適合作為高等學校計算機及相關專業本科生“離散數學”課程的教材,也可以作為對離散數學感興趣的人員的入門參考書。
全書共14章,內容包含證明技巧、數理邏輯、集合與關係、函式、組合計數、圖和樹、初等數論等。
基本介紹
- 書名:離散數學(第3版)
- 作者:屈婉玲、耿素雲、張立昂
- ISBN:9787302339892
- 類別:普通高等教育“十一五”國家級規劃教材
- 頁數:334頁
- 出版社:清華大學出版社
- 出版時間:2014年1月1日
- 裝幀:平裝
- 開本:16開
- 字數:534千字
- CIP核字號:2014227648
成書過程
修訂情況
出版工作
責任編輯 | 封面設計 | 責任校對 | 責任印製 |
---|---|---|---|
張瑞慶 | 傅瑞學 | 焦麗麗 | 何芊 |
內容簡介
教材目錄
1.1常用的數學符號1 1.1.1集合符號1 1.1.2運算符號2 1.1.3邏輯符號2 1.2集合及其運算3 1.2.1集合及其表示法3 1.2.2集合之間的包含與相等4 1.2.3集合的冪集5 1.2.4集合的運算6 1.2.5基本集合恆等式及其套用8 1.3證明方法概述11 1.3.1直接證明法和歸謬法12 1.3.2分情況證明法和構造性證明法12 1.3.3數學歸納法14 1.4遞歸定義16 習題17 第2章命題邏輯22 2.1命題邏輯基本概念22 2.1.1命題與聯結詞22 2.1.2命題公式及其分類28 2.2命題邏輯等值演算33 2.2.1等值式與等值演算33 2.2.2聯結詞完備集37 2.3範式39 2.3.1析取範式與合取範式39 2.3.2主析取範式與主合取範式42 2.4推理49 2.4.1推理的形式結構49 2.4.2推理的證明51 2.4.3歸結證明法57 2.4.4對證明方法的補充說明60 習題60 第3章一階邏輯66 3.1一階邏輯基本概念66 3.1.1命題邏輯的局限性66 3.1.2個體詞、謂詞與量詞66 3.1.3一階邏輯命題符號化68 3.1.4一階邏輯公式與分類71 3.2一階邏輯等值演算75 3.2.1一階邏輯等值式與置換規則75 3.2.2一階邏輯前束範式79 習題81 第4章關係86 4.1關係的定義及其表示86 4.1.1有序對與笛卡兒積86 4.1.2二元關係的定義87 4.1.3二元關係的表示89 4.2關係的運算90 4.2.1關係的基本運算90 4.2.2關係的冪運算93 4.3關係的性質96 4.3.1關係性質的定義和判別96 4.3.2關係的閉包100 4.4等價關係與偏序關係104 4.4.1等價關係104 4.4.2等價類和商集104 4.4.3集合的劃分105 4.4.4偏序關係107 4.4.5偏序集與哈斯圖108 習題112 第5章函式116 5.1函式的定義及其性質116 5.1.1函式的定義116 5.1.2函式的像與完全原像118 5.1.3函式的性質119 5.2函式的複合與反函式122 5.2.1函式的複合122 5.2.2反函式124 習題128 第6章圖132 6.1圖的基本概念132 6.1.1無向圖與有向圖132 6.1.2頂點的度數與握手定理134 6.1.3簡單圖、完全圖、正則圖、圈圖、輪圖、方體圖136 6.1.4子圖、補圖138 6.1.5圖的同構139 6.2圖的連通性141 6.2.1通路與迴路141 6.2.2無向圖的連通性與連通度141 6.2.3有向圖的連通性及其分類144 6.3圖的矩陣表示144 6.3.1無向圖的關聯矩陣144 6.3.2有向無環圖的關聯矩陣145 6.3.3有向圖的鄰接矩陣146 6.3.4有向圖的可達矩陣147 6.4幾種特殊的圖149 6.4.1二部圖149 6.4.2歐拉圖152 6.4.3哈密頓圖154 6.4.4平面圖157 習題166 第7章樹及其套用173 7.1無向樹173 7.1.1無向樹的定義及其性質173 7.1.2生成樹176 7.2根樹及其套用177 7.2.1根樹及其分類177 7.2.2最優樹與哈夫曼算法178 | 7.2.3最佳前綴碼179 7.2.4根樹的週遊及其套用181 習題182 8.1基本計數規則186 8.1.1加法法則186 8.1.2乘法法則186 8.1.3分類處理與分步處理187 8.2排列與組合187 8.2.1集合的排列與組合188 8.2.2多重集的排列與組合191 8.3二項式定理與組合恆等式193 8.3.1二項式定理193 8.3.2組合恆等式194 8.3.3非降路徑問題198 8.4多項式定理與多項式係數201 8.4.1多項式定理201 8.4.2多項式係數202 習題203 第9章容斥原理206 9.1容斥原理及其套用206 9.1.1容斥原理的基本形式206 9.1.2容斥原理的套用207 9.2對稱篩公式及其套用210 9.2.1對稱篩公式210 9.2.2棋盤多項式與有限制條件的排列212 習題215 第10章遞推方程與生成函式217 10.1遞推方程及其套用217 10.1.1遞推方程的定義及實例217 10.1.2常係數線性齊次遞推方程的求解219 10.1.3常係數線性非齊次遞推方程的求解222 10.1.4遞推方程的其他解法224 10.1.5遞推方程與遞歸算法228 10.2生成函式及其套用233 10.2.1牛頓二項式定理與牛頓二項式係數233 10.2.2生成函式的定義及其性質234 10.2.3生成函式的套用236 10.3指數生成函式及其套用241 10.4Catalan數與Stirling數243 習題248 第11章初等數論251 11.1素數251 11.2最大公約數與最低公倍數254 11.3同餘257 11.4一次同餘方程與中國剩餘定理259 11.4.1一次同餘方程259 11.4.2中國剩餘定理260 11.4.3大整數算術運算262 11.5歐拉定理和費馬小定理263 習題264 第12章離散機率268 12.1隨機事件與機率、事件的運算268 12.1.1隨機事件與機率268 12.1.2事件的運算270 12.2條件機率與獨立性271 12.2.1條件機率271 12.2.2獨立性273 12.2.3伯努利概型與二項機率公式273 12.3離散型隨機變數274 12.3.1離散型隨機變數及其分布律274 12.3.2常用分布275 12.3.3數學期望276 12.3.4方差278 12.4機率母函式280 習題282 第13章初等數論和離散機率的套用286 13.1密碼學286 13.1.1愷撒密碼286 13.1.2RSA公鑰密碼287 13.2產生偽隨機數的方法289 13.2.1產生均勻偽隨機數的方法289 13.2.2產生離散型偽隨機數的方法290 13.3算法的平均複雜度分析292 13.3.1排序算法292 13.3.2散列表的檢索和插入295 13.4隨機算法298 13.4.1隨機快速排序算法298 13.4.2多項式恆零測試299 13.4.3素數測試301 13.4.4蒙特卡羅法和拉斯維加斯法302 習題303 第14章代數系統306 14.1二元運算及其性質306 14.1.1二元運算與一元運算的定義306 14.1.2二元運算的性質308 14.2代數系統311 14.2.1代數系統的定義與實例311 14.2.2代數系統的分類312 14.2.3子代數系統與積代數系統313 14.2.4代數系統的同態與同構314 14.3幾個典型的代數系統315 14.3.1半群與獨異點315 14.3.2群317 14.3.3環與域323 14.3.4格與布爾代數325 習題330 參考文獻335 |
教學資源
- 配套教材
書名 | 書號 | 出版社 | 作者 |
---|---|---|---|
《離散數學習題解答與學習指導(第3版)》 | 9787302339908 | 清華大學出版社 | 屈婉玲、耿素雲、張立昂 |
- 課程資源