長方體

長方體

長方體(又稱矩體,cuboid)是底面為長方形的直四稜柱(或上、下底面為矩形的直平行六面體)。其由六個面組成的,相對的面面積相等,可能有兩個面(可能四個面是長方形,也可能是六個面都是長方形)是正方形

基本介紹

  • 中文名:長方體
  • 外文名:cuboid
  • 定義:底面為長方形的直四稜柱
  • 組成:6個面、8個頂點、12條棱
  • 體積公式:v=abc(體積=長x寬x高)
  • 表面積公式:S=2(ab+bc+ca)
  • 總棱長公式:c=4(a+b+h)
概念,組成,特徵,度量及計算,對角線,表面積,體積,

概念

長方體(cuboid)是底面是長方形的直稜柱。正方體是特殊的長方體,正方體是六個面都是正方形的長方體。長方體的每一個矩形都叫做長方體的,面與面相交的線叫做長方體的,三條棱相交的點叫做長方體的頂點。長方體六個面面積的和,叫作長方體的表面積。長方體的體積是對長方體的一種度量,長方體的體積等於長、寬、高之積。

組成

(1)長方體的面(plane)
圍成封閉幾何體的平面多邊形稱為多面體的面。長方體有6個面。其中每個面都是長方形(有可能有2個相對的面是正方形),有3對相對的面。相對的面形狀相同、面積相等。
圖1 長方體的認識圖1 長方體的認識
(2)長方體的棱(edge)
多面體上兩個面的公共邊稱為多面體的棱。長方體有12條棱,其中有3組相對的棱,每組相對的4條棱互相平行、長度相等(有可能有8條棱長度相等)。
(3)長方體的頂點(point)
長方體有8個頂點,相交於一個頂點的三條棱分別叫作長方體的長(length)、寬(width)、高(height)。一般情況下,把底面中較長的一條棱叫作長,較短的一條棱叫作寬,垂直於底面的棱叫作高。

特徵

(1) 長方體有6個面。每組相對的面完全相同。
(2) 長方體有12條棱,相對的四條棱長度相等。按長度可分為三組,每一組有4條棱。
(3) 長方體有8個頂點。每個頂點連線三條棱。三條棱分別叫做長方體的長,寬,高。
(4) 長方體相鄰兩條棱互相垂直

度量及計算

對角線

長度:長方體的對角線是長方體的任意一個頂點到對邊頂點的長度。
圖2長方體圖示圖2長方體圖示
對角線的長度:依據勾股定理,點2和點3的長度是根號(點1到點2的長度的平方+點1到點3的長度的平方),而點2到點3的線又與點3到點5的長度形成直角,所以對角線的長度是:長方體對角線平方=長平方+寬平方+高平方

表面積

因為相對的2個面面積相等,所以先算上下兩個面,再算前後兩個面,最後算左右兩個面。
設一個長方體的長、寬、高分別為a、b、c,則它的表面積為S = (ab+bc+ca)×2,也等於2ab+2bc+2ca,還等於2(ab+bc+ca);
公式:長方體的表面積=長×寬×2+寬×高×2+長×高×2,或:長方體的表面積=(長×寬+寬×高+長×高)×2。

體積

長方體的體積=長×寬×高。設一個長方體的長、寬、高分別為a、b、c,則它的體積
。因為長方體也屬於稜柱的一種,所以稜柱的體積計算公式它也同樣適用。長方體體積=底面積× 高,即
(S是底面積)。

相關詞條

熱門詞條

聯絡我們