特點
轉錄時,細胞通過鹼基互補的原則來生成一條帶有互補鹼基的
mRNA,通過它攜帶密碼子到
核糖體中可以實現蛋白質的合成。與DNA的複製相比,轉錄有很多相同或相似之處,亦有其自己的特點。
轉錄中,一個基因會被讀取並複製為mRNA。就是說,以特定的DNA片段作為模板,以DNA依賴的RNA合成酶作為催化劑,合成前體mRNA。
在體內,轉錄是基因表達的第一階段,並且是基因調節的主要階段。轉錄可產生DNA複製的引物,在反轉錄病毒感染中也起到重要作用。
轉錄僅以DNA的一條鏈作為模板。被選為模板的單鏈叫
模板鏈,又稱無義鏈;另一條單鏈叫非模板鏈,又稱編碼鏈、有義鏈、信息鏈。DNA上的轉錄區域稱為轉錄單位(transcription unit)。
RNA聚合酶合成RNA時不需引物,但無校正功能。
舉例
DNA: 5'-ATCGAATCG-3' (將此為非模板鏈)
3'-TAGCTTAGC-5' (將此為模板鏈)
轉錄出的 mRNA: 5'-AUCGAAUCG-3'
逆轉錄
RNA聚合酶是以DNA為模板的RNA聚合酶,也稱轉錄酶。
原核生物的RNA聚合酶分子量很大,通常由5個亞基組成;兩個α亞基,β,β′和σ,可寫作α2ββ′σ。含有5個亞基的酶叫全酶,失去σ亞基的叫核心酶(α2ββ′)。後來發現,核心酶還有一個亞基ω,因此,核心酶的亞基組成可表示為α2ββ′ω,全酶的亞基組成可以表示為α2ββ′ωσ。核心酶也能催化RNA的合成,但沒有固定的起始點,也不能區分雙鏈DNA的信息鏈與非信息鏈。σ亞基能識別模板上的信息鏈和啟動子,因而保證轉錄能從固定的正確位置開始。β和β′亞基參與和DNA鏈的結合。兩個相同的α亞基負責識別和結合啟動子,決定了基因轉錄的特異性。ω亞基的具體作用則尚未明確。
真核生物RNA聚合酶有3類(不包括真核細胞線粒體中類似
原核的RNA聚合酶),由8~12條亞基組成,分子量高達80萬。初步的研究指出,它們也可能存在類似原核的σ
亞基組分。
轉錄過程
在轉錄過程中,
DNA模板被轉錄方向是從3′端向5′端;RNA鏈的合成方向是從5′端向3′端。RNA的合成一般分兩步,第一步合成原始轉錄產物(過程包括轉錄的啟動、延伸和終止);第二步轉錄產物的後加工,使無生物活性的原始轉錄產物轉變成有生物功能的成熟RNA。但
原核生物mRNA的原始轉錄產物一般不需後加工就能直接作為翻譯蛋白質的模板。
啟動
RNA聚合酶正確識別DNA編碼鏈上的啟動子並形成由酶、DNA和
核苷三磷酸(NTP)構成的三元起始複合物,轉錄即自此開始。DNA模板上的啟動區域常含有TATAATG順序,稱普里布諾(Pribnow)盒或P盒。複合物中的核苷三磷酸一般為GTP,少數為ATP,因而原始轉錄產物的5′端通常為
三磷酸鳥苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的轉錄啟動區域也有類似
原核DNA的啟動區結構,和在-30bp(即在酶和DNA結合點的上游30
核苷酸處,常以—30表示,bp為
鹼基對的簡寫)附近也含有TATA結構,稱霍格內斯(Hogness)盒或
TATA盒。第一個核苷三磷酸與第二個核苷三磷酸縮合生成3′-5′
磷酸二酯鍵後,則啟動階段結束,進入延伸階段。
延伸
σ亞基脫離酶分子,留下的核心酶與DNA的結合變松,因而較容易繼續往前移動。核心酶無模板專一性,能轉錄模板上的任何順序,包括在
轉錄後加工時待切除的居間順序。脫離核心酶的σ亞基還可與另外的核心酶結合,參與另一轉錄過程。隨著轉錄不斷延伸,DNA
雙鏈順次地被打開,並接受新來的鹼基配對,合成新的磷酸二酯鍵後,核心酶向前移去,已使用過的模板重新關閉起來,恢復原來的雙鏈結構。一般合成的RNA鏈對DNA模板具有高度的忠實性。RNA合成的速度,原核為25~50個核苷酸/秒,真核為45~100個核苷酸/秒。
終止
轉錄的終止包括停止延伸及釋放RNA聚合酶和合成的RNA。在原核生物基因或
操縱子的末端通常有一段
終止序列即
終止子;RNA合成就在這裡終止。
原核細胞轉錄終止需要一種
終止因子ρ(六個亞基構成的蛋白質)的幫助。真核生物DNA上也可能有轉錄終止的信號。已知真核DNA
轉錄單元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之後又出現TTTT順序(通常是3~5個T),這些結構可能與轉錄終止或者與3′端添加多聚A順序有關。
轉錄產物
mRNA前體的後加工
原核mRNA的原始轉錄產物(除個別
噬菌體外)都可直接用於
翻譯,而真核mRNA一般都有相應的前體,前體必須經過後加工才能用於轉譯蛋白質。一般認為,真核mRNA的原始轉錄產物(也稱原始轉錄前體), hn RNA(hetero-geneous nuclear RNA,核不均一RNA),最終被加工成成熟的mRNA。
mRNA前體的後加工包括以下四方面:①裝上5′端帽子:轉錄產物的5′端通常要裝上甲基化的帽子;有的轉錄產物5′端有多餘的順序,則需切除後再裝上帽子。②裝上3′端多聚A尾巴:轉錄產物的3′端通常由多聚A聚合酶催化加上一段多聚A,多聚A尾巴的平均長度在20~200個核苷酸;有的轉錄產物的3′端有多餘順序,則需切除後再加上尾巴。裝5′端帽子和3′端尾巴均可能在剪接之前就已完成。③剪接:將mRNA前體上的居間順序切除,再將被隔開的蛋白質
編碼區連線起來。剪接過程是由細胞核
小分子RNA(如U1RNA)參與完成的,被切除的居間順序形成套索形(即lariat RNA中間體)。④修飾:mRNA分子內的某些部位常存在N6-甲基
腺苷,它是由
甲基化酶催化產生的,也是在
轉錄後加工時修飾的。
有的真核mRNA前體,由於後加工的不同可產生兩種或兩種以上的mRNA(如人的降血鈣素
基因轉錄產物),因而能翻譯成兩種或兩種以上的多肽鏈。
tRNA前體的後加工
目前分離得到的
tRNA前體有兩類:①含單個tRNA的tRNA前體,在5′端和3′端各有一段多餘順序;②含二個tRNA的tRNA前體,除5′端和3′端有長短不一的多餘順序外,在兩個tRNA之間還有數目不等的核苷酸隔開。有的真核tRNA前體的
反密碼子環區含有一個居間順序。
原核和真核生物tRNA前體的後加工有相似的步驟:①修飾:對tRNA分子上的部分核苷酸進行修飾(包括甲基化、醯化、硫代和重排等);②切除5′端和3′端多餘核苷酸;③3′端不含CCA順序的tRNA前體需裝上CCA順序。原核與真核tRNA前體的加工過程還有不同的情況:①原核
多順反子tRNA前體,需加工時切開;②含有居間順序的真核tRNA前體,加工時需除去居間順序。首先,tRNA前體被一
內切核酸酶將居間順序切除,產生帶有 2′,3′-環磷酸的5′半分子和含有5′
羥基的3′半分子;然後兩個半分子分別在2′,3′-環磷酸二酯酶和
多核苷酸激酶作用下使5′半分子露出了羥基和2′磷酸基,使3′半分子帶上5′磷酸基,這兩個半分子再先後經過連線酶和
磷酸單酯酶(去除2′磷酸基)的作用,最後生成成熟的tRNA。
rRNA前體的後加工
rRNA前體的後加工通常有如下步驟:①修飾:除5SrRNA外,rRNA分子上通常有修飾核苷酸(主要是甲基化核苷酸),它們都是在後加工時修飾的。一般認為核糖2′羥基的
甲基化在鹼基甲基化之前;②剪下:在rRNA前體分子的多餘順序處切開,產生許多中間前體,然後再切除中間前體末端的多餘順序;③剪接:有的真核生物rRNA前體中存在有居間順序的,須加工時除去。1982年T.R.切赫發現,在四膜蟲(
Tetrahymena)rRNA前體中,去除含有413個核苷酸的居間順序是由rRNA前體自身催化完成的。在 5′-
鳥苷酸的促進下經過
自身催化作用將居間順序切除,居間順序前後的兩個部分再連線起來,產生成熟的rRNA(5′-UpU-3′)和一個環狀RNA分子及一個15個
核苷酸殘基的小片段。rRNA前體的自身催化作用表明 RNA具有類似於酶的活性。這一發現突破了
生物高分子中只有蛋白質才有催化作用的觀念。同時對
生物進化與生命起源等研究都將有重要的意義。
區別
真核生物RNA的轉錄與原核生物RNA的轉錄過程在總體上基本相同,但是,其過程要複雜得多,主要有以下幾點不同:
⒈ 真核生物RNA的轉錄有的是在細胞核內進行的,而蛋白質的合成則是在細胞質內進行的。且真核生物線粒體和葉綠體的遺傳信息系統被稱為真核細胞的第二遺傳信息系統,或核外基因及其表達體系。這是因為研究發現,線粒體和葉綠體中除有DNA外,還有RNA(mRNA、tRNA、 RNA)、核糖體、胺基酸活化酶等。說明這兩種細胞器都具有獨立進行轉錄和轉譯的功能。也就是說,線粒體和葉綠體都具有自身轉錄RNA和翻譯蛋白質的體系。
⒉ 真核生物一個mRNA分子一般只含有一個基因,原核生物的一個mRNA分子通常含有多個基因,而除少數較低等真核生物外,一個mRNA分子一般只含有一個基因,編碼一條
多肽鏈。
⒊ 真核生物RNA聚合酶較多,在原核生物中只有一種RNA聚合酶,催化所有RNA的合成,而在真核生物中則有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三種不同酶,分別催化不同種類型RNA的合成。三種RNA聚合酶都是由10個以上
亞基組成的
複合酶。RNA聚合酶Ⅰ存在於細胞核內,催化合成除5SrRNA以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前體,即
不均一核RNA(hnRNA)的合成;RNA聚合酶Ⅲ催化tRNA和小核RNA的合成。
⒋ 真核生物RNA聚合酶不能獨立轉錄RNA 。原核生物中RNA聚合酶可以直接起始轉錄合成RNA ,真核生物則不能。在真核生物中,三種RNA聚合酶都必須在蛋白質
轉錄因子的協助下才能進行RNA的轉錄。另外,RNA聚合酶對轉錄啟動子的識別,也比原核生物更加複雜,如對RNA聚合酶Ⅱ來說,至少有三個DNA的
保守序列與其轉錄的起始有關,第一個稱為TATA框(TATA box),具有
共有序列TATAAAA,其位置在
轉錄起始點的上游約為25個核苷酸處,它的作用可能與原核生物中的-10共有序列相似,與轉錄起始位置的確定有關。第二個共有序列稱為
CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位於轉錄起始位置上游約為50-500個核苷酸處。如果該序列缺失會極大地降低生物的活體轉錄水平。第三個區域一般稱為
增強子(enhancer),其位置可以在轉錄起始位置的上游,也可以在下游或者在基因之內。它雖不直接與
轉錄複合體結合,但可以顯著提高轉錄效率。
原核生物和真核生物的線粒體與葉綠體轉錄與翻譯同時進行
調節控制
轉錄的調節控制是基因表達調節控制中的一個重要環節。促進基因轉錄叫
正調節,
抑制基因轉錄叫負調節。
在原核生物方面1961年F.雅各布和J.
莫諾提出的操縱子學說,得到許多人的驗證和充實。操縱子通常的調控方式為:①誘導和阻遏作用;②
環腺苷酸(CAMP)和降解物活化蛋白(CAP)的調節作用;③
弱化作用。
對
真核細胞基因轉錄的調節控制目前知道得很少。同種高等生物每個個體的各個體細胞都有全套相同的基因,只是由於在發育過程中基因表達的調節控制(包括轉錄的調節控制)不同,因而發育成各種不同的組織和器官。目前認為,動物(包括人)都含有
癌基因,但有的致癌,有的則不致癌,這也可能是由於轉錄與翻譯的調控不同。另外,真核DNA中的
結構基因只占總量的10%左右,大部分DNA順序都可能起調節控制作用。真核生物也有
誘導酶和誘導蛋白質,如干擾素就是由病毒或雙鏈RNA等誘導產生的一種蛋白質。
抑制劑
轉錄能被一些
特異性的抑制劑抑制,有些抑制劑是治療某些疾病的藥物,有的則是研究轉錄機理的重要試劑。按照作用機理的不同,轉錄抑制劑分為兩大類。第一類抑制劑特異性地與DNA鏈結合,抑制模板的活性,使轉錄不能進行。這類抑制劑同時抑制DNA複製,例如:放線菌素D、
紡錘菌素、
遠黴素、
溴乙錠和
黃麴黴素等。第二類抑制劑作用於RNA聚合酶,使RNA聚合酶的活性改變或喪失,從而抑制轉錄的進行。這類抑制劑只抑制轉錄,不影響複製,是研究轉錄機制和RNA聚合酶性質的重要工具,例如:利福平等。
解旋酶
在真核細胞中,RNA聚合酶通常不能單獨發揮轉錄作用,而需要與其他轉錄因子共同協作,有些輔助功能的轉錄因子就是解旋酶。
以反式作用影響轉錄的因子可統稱為
轉錄因子(transcription factors, TF)。RNA聚合酶是一種反式作用於轉錄的蛋白因子。與RNA聚合酶Ⅰ、Ⅱ、Ⅲ相應的轉錄因子分別稱為TFⅠ、TFⅡ、TFⅢ,對TFⅡ研究最多。表19-2列出真核基因轉錄需要基本的TFⅡ。
表19-2 RNA聚合酶Ⅱ的基本轉錄因子
轉錄因子 | 分子量(kD) | 功能 |
TBP | 30 | 與TATA盒結合 |
TFⅡ-B | 33 | 介導RNA聚合酶Ⅱ的結合 |
TFⅡ-F | 30,74 | 解旋酶 |
TFⅡ-E | 34,37 | ATP酶 |
TFⅡ-H | 62,89 | 解旋酶 |
TFⅡ-A | 12,19,35 | 穩定TFⅡ-D的結合 |
TFⅡ-I | 120 | 促進TFⅡ-D的結合 |
以前認為與TATA盒結合的蛋白因子是TFⅡ-D,後來發現TFⅡ-D實際包括兩類成分:與TATA盒結合的蛋白是TBP(TATAbox binding protein),是唯一能識別TATA盒並與其結合的轉錄因子,是三種RNA聚合酶轉錄時都需要的;其他稱為TBP相關因子(TBP?associated factors TAF),至少包括8種能與TBP緊密結合的因子。轉錄前先是TFⅡ-D與TATA盒結合;繼而TFⅡ-B以其C端與TBP-DNA複合體結合,其N端則能與RNA聚合酶Ⅱ親和結合,接著由兩個亞基組成的TFⅡ-F加入裝配,TFⅡ-F能與RNA聚合酶形成複合體,還具有依賴於ATP供給能量的DNA解旋酶活性,能解開前方的DNA雙螺旋,在轉錄鏈延伸中起作用。這樣,啟動子序列就與TFⅡ-D、B、F及RNA聚合酶Ⅱ結合形成一個“最低限度”能有轉錄功能基礎的轉錄前起始複合物(pre?intitiation complex, PIC),能轉錄mRNA。TFⅡ-H是多亞基蛋白複合體,具有依賴於ATP供給能量的DNA解旋酶活性,在轉錄鏈延伸中發揮作用;TFⅡ-E是兩個亞基組成的四聚體,不直接與DNA結合而可能是與TFⅡ-B聯繫,能提高ATP酶的活性;TFⅡ-E和TFⅡ-H的加入就形成完整的轉錄複合體,能轉錄延伸生成長鏈RNA,TFⅡ-A能穩定TFⅡ-D與TATA盒的結合,提高轉錄效率,但不是轉錄複合體一定需要的。