統計學:思想

所謂統計思想,就是在統計實際工作、統計學理論的套用研究中,必須遵循的基本理念和指導思想。統計思想主要包括均值思想、變異思想、估計思想、相關思想、擬合思想、檢驗思想等思想。文章通過對統計思想的闡釋,提出關於統計思想認識的三點思考。

關於統計學,統計學中的幾種統計思想,1.統計思想的形成摺疊,2.比較常用的幾種統計思想摺疊,2.2.1均值思想摺疊,2.2.2變異思想摺疊,2.2.3估計思想摺疊,2.2.4相關思想摺疊,2.2.5擬合思想摺疊,2.2.6檢驗思想摺疊,3對統計思想的一些思考摺疊,

關於統計學

統計學是一門實質性的社會科學,既研究社會生活的客觀規律,也研究統計方法。統計學是繼承和發展基礎統計的理論成果,堅持統計學的社會科學性質,使統計理論研究更接近統計工作實際,在國家和社會得到廣泛發展。

統計學中的幾種統計思想

1.統計思想的形成摺疊

統計思想不是天然形成的,需要經歷統計觀念、統計意識、統計理念等階段。統計思想是根據人類社會需求的變化而開展各種統計實踐、統計理論研究與概括,才能逐步形成系統的統計思想。

2.比較常用的幾種統計思想摺疊

所謂統計思想,就是統計實際工作、統計學理論及套用研究中必須遵循的基本理念和指導思想。統計思想主要包括:均值思想、變異思想、估計思想、相關思想、擬合思想、檢驗思想。現分述如下:

2.2.1均值思想摺疊

均值是對所要研究對象的簡明而重要的代表。均值概念幾乎涉及所有統計學理論,是統計學的基本思想。均值思想也要求從總體上看問題,但要求觀察其一般發展趨勢,避免個別偶然現象的干擾,故也體現了總體觀。

2.2.2變異思想摺疊

統計研究同類現象的總體特徵,它的前提則是總體各單位的特徵存在著差異。統計方法就是要認識事物數量方面的差異。統計學反映變異情況較基本的概念是方差,是表示“變異”的“一般水平”的概念。平均與變異都是對同類事物特徵的抽象和巨觀度量。

2.2.3估計思想摺疊

估計以樣本推測總體,是對同類事物的由此及彼式的認識方法。使用估計方法有一個預設:樣本與總體具有相同的性質。樣本才能代表總體。但樣本的代表性受偶然因素影響,在估計理論對置信程度的測量就是保持邏輯嚴謹的必要步驟。

2.2.4相關思想摺疊

事物是普遍聯繫的,在變化中,經常出現一些事物相隨共變或相隨共現的情況,總體又是由許多個別事務所組成,這些個別事物是相互關聯的,而我們所研究的事物總體又是在同質性的基礎上形成。因而,總體中的個體之間、這一總體與另一總體之間總是相互關聯的。

2.2.5擬合思想摺疊

擬合是對不同類型事物之間關係之表象的抽象。任何一個單一的關係必須依賴其他關係而存在,所有實際事物的關係都表現得非常複雜,這種方法就是對規律或趨勢的擬合。擬合的成果是模型,反映一般趨勢。趨勢表達的是“事物和關係的變化過程在數量上所體現的模式和基於此而預示的可能性”。

2.2.6檢驗思想摺疊

統計方法總是歸納性的,其結論永遠帶有一定的或然性,基於局部特徵和規律所推廣出來的判斷不可能完全可信,檢驗過程就是利用樣本的實際資料來檢驗事先對總體某些數量特徵的假設是否可信。

3對統計思想的一些思考摺疊

3.1 要更正當前存在的一些不正確的思想認識
英國著名生物學家、統計學家高爾頓曾經說過:“統計學具有處理複雜問題的非凡能力,當科學的探索者在前進的過程中荊棘載途時,唯有統計學可以幫助他們打開一條通道”。但事實並非這么簡單,因為我們所面臨的現實問題可能要比想像的複雜得多。此外,有些人認為方法越複雜越科學,在實際的分析研究中,喜歡簡單問題複雜化,似乎這樣才能顯示其科學含量。其實,真正的科學是使複雜的問題簡單化而不是追求複雜化。與此相關聯的是,有些人認為只有推斷統計才是科學,描述統計不是科學,並延伸擴大到只有數理統計是科學、社會經濟統計不是科學這樣的認識。這種認識是極其錯誤的,至少是對社會經濟統計的無知。比利時數學家凱特勒不僅研究機率論,並且注重於把統計學套用於人類事物,試圖把統計學創建成改良社會的一種工具。經濟學和人口統計學中的某些近代概念,如GNP、人口增長率等等,均是凱特勒及其弟子們的遺產。
3.2要不斷拓展統計思維方式
統計學是以歸納推理或歸納思維為主要的邏輯方式的。眾所周知,邏輯推理方式主要有兩種:歸納推理和演繹推理。歸納推理是基於觀測到的數據信息(尤其是不完全甚至劣質的信息)去產生新的知識或去驗證一個假設,即以所掌握的數據信息為依據,歸納得出具有一般特徵的結論。歸納推理是要在數據信息的基礎上透過偶然性去發現必然性。演繹推理是對統計認識能力的深化,尤其是在根據必然性去研究和認識偶然性方面,具有很大的作用。
3.3深化對數據分析的認識
任何統計研究都離不開數據分析。因為這是得到統計研究結論的必要環節。雖然統計分析的形式隨時代的推移而變化著,但是“從數據中提取一切信息”或者“歸納和揭示”作為統計分析的目的卻一直沒有改變。對統計數據分析的原因有以下三個方面:一是基於同樣的數據會得出不同、甚至相反的分析結論;二是我們所面對的分析數據有時是缺損的或存在不真實性;三是我們所面對的分析數據有時則又是海量的,讓人無從下手。雖然統計數據分析已經經歷了描述性數據分析(DDA)、推斷性數據分析(IDA)和探索性數據分析(EDA)等階段,分析的方法技術已經有了質的飛躍,但與人類不斷提高的要求相比,存在的問題似乎也越來越多。所以,我們必須深化對數據分析的認識,圍繞“準確解答特定問題並且從數據中獲取一切有效信息”這一目的,不斷拓展研究思路,繼續開展數據分析方法技術的研究。

相關詞條

熱門詞條

聯絡我們