熵定律

熵定律

熵定律是科學定律之最,這是愛因斯坦的觀點。我們知道能源與材料、信息一樣,是物質世界的三個基本要素之一,而在物理定律中,能量守恆定律是最重要的定律,它表明了各種形式的能量在相互轉換時,總是不生不滅保持平衡的。熵,即為衡量混亂程度的度量,熵定律也被稱為熱力學定律。熱力學第二定律,又稱“熵增定律”,表明了在自然過程中,一個孤立系統的總混亂度(即“熵”)不會減小。

基本介紹

  • 中文名:熵定律
  • 外文名:law of entropy
  • 屬性:科學定律之最
  • 觀點愛因斯坦
  • 類型:物質世界的三個基本要素之一
  • 學科:物理
簡介,最高定律,熵概念,熵流,計算公式,實例,冰櫃不能減熵,地熱來源,引力“熵增減”,一種解釋,另一種解釋,

簡介

在資訊理論中,被用來衡量一個隨機變數出現的期望值。它代表了在被接收之前,信號傳輸過程中損失的信息量,又被稱為信息熵。信息熵也稱信源熵平均自信息量。在1948年,克勞德·艾爾伍德·香農熱力學的熵,引入到資訊理論,因此它又被稱為香農熵
在生態學中是表示生物多樣性的指標。

最高定律

熵定律是自然界的最高定律。在等勢面上,熵增原理反映了非熱能與熱能之間的轉換具有方向性,即非熱能轉變為熱能效率可以為100%,而熱能轉變成非熱能時效率則小於100%(轉換效率與溫差成正比),這種規律制約著自然界能源的演變方向,對人類生產、生活影響巨大;在重力場中,熱流方向由體系的勢焓(勢能+焓)差決定,即熱量自動地從高勢焓區傳導至低勢焓區,當出現高勢焓區低溫和低勢焓區高溫時,熱量自動地從低溫區傳導至高溫區,且不需付出其他代價,即絕對熵減過程。

熵概念

熵概念源於卡諾熱機循環效率的研究,是以熱溫商的形式而問世的,當計算某體系發生狀態變化所引起的熵變總離不開兩點,一是可逆過程;二是熱量的得失,故總熵概念擺脫不了熱溫商這個原始外衣。當用狀態數來認識熵的本質時,我們通過研究發現,理想氣體體系的總微觀狀態數受巨觀的體積、溫度參數的控制,進而得到體系的總熵等於體積熵與溫度熵之和(見有關文章),用分熵概念考察體系的熵變化,不必設計什麼可逆路徑,概念直觀、計算方便(已被部分專家認可),因而有利於教和學。

熵流

熵流是普里戈津在研究熱力學開放系統時首次提出的概念(普里戈津是比利時科學家,因對熱力學理論有所發展,獲得1977年諾貝爾化學獎),普氏的熵流概念是指系統與外界交換的物質流及能量流。我們認為這個定義不太精闢,這應從熵的本質來認識它,不錯物質流一定是熵的載體,而能量流則不一定,能量可分熱能和非熱能[如電能、機械能、光能(不是熱輻射)],當某絕熱系統與外界交換非熱能(發生可逆變化)時,如通電導線(超導材料)經過絕熱系統內,對體系內熵沒有影響,準確地說能量流中只有熱能流(含熱輻射)能引人熵流(對非絕熱系統)。對於實際情形,非熱能作用於系統發生的多是不可逆過程,會有熱效應產生,這時系統出現熵增加,這只能叫(有原因的)熵產生,而不能叫熵流的流入,因能量流不等於熵流,所以不論什麼形式的非熱能流都不能叫熵流,更不能籠統地把能量流稱為熵流。

計算公式

1.克勞修斯首次從巨觀角度提出熵概念,其計算公式為:S=Q/T,(計算熵差時,式中應為△Q)
2.波爾茲曼又從微觀角度提出熵概念,公式為:S=klnΩ,Ω是微觀狀態數,通常又把S當作描述混亂成度的量。
3.筆者針對Ω不易理解、使用不便的現狀,研究認為Ω與理想氣體體系的巨觀參量成正比,即:Ω(T)=(T/εT)3/2,Ω(V)=V/εV,得到理想氣體的體積熵為SV=klnΩv=klnV,溫度熵為ST=klnΩT=(3/2)klnT ,計算任意過程的熵差公式為△S=(3/2)kln(T'/T)+kln(V'/V),這微觀與巨觀關係式及分熵公式,具有易於理解、使用方便的特點,有利於教和學,可稱為第三代熵公式。
上述三代熵公式,使用的物理量從形式上看具有"直觀→抽象→直觀"的特點,我們認為這不是概念遊戲,是對熵概念認識的一次飛躍。

實例

冰櫃不能減熵

克勞修斯熵增原理表述為:"熱量不能自動地從低溫物體傳向高溫物體”,這給人們一個錯覺,外界做功使熱量從低溫物體傳到高溫物體,或者說使等溫體變成不等溫體,就意味著發生熵減。這種認識是偏面的,以絕熱房間內放一工作的電冰櫃為例,冰櫃內溫度變低,冰櫃外的房間內溫度變高,許多人把這外界做功而拉開溫差的現象叫做熵減。這種看法是錯誤的,僅就室內的冰櫃內外來說,如果考慮了電流的熱效應,這個室內的總熵變化只增不減(不信可計算一下)。外界做功不能使絕熱系統內的熵減少,不論是電能、機械能等非熱能做功(通常不能避免熱效應)都不能使絕熱系統內的熵減少,所以說,我們認為熵增原理準確的表述應為:“在等勢面上,絕熱系統內的熵永不減少”。

地熱來源

地下熱能儲量巨大,相當於全球煤炭儲量的1.7億倍。有人估算,以當今全世界耗能總量計算,即使全部使用地熱能,4100萬年後才能使地球內部的溫度下降 1℃。地熱的特點呈內高外低分布,我們認為(另有論文)它遵循"可壓縮流體的靜力學方程",即勢焓(勢能+焓)平衡規律,當地內勢焓低於地表勢焓時,重力具有雲集地表低溫熱能向地心轉移的機制,地熱是永恆存在的能源。關於地熱來源問題,人們尚無準確定論,主要有兩種解釋:
1.地球內部的放射性元素蛻變放熱,即原子能;
2.地球在形成初期帶來的熱量。我們對上述解釋的看法是,如果是第一種,有三種情況:
①地熱溫度呈外低內高按一定梯度的分布,那熱源必在地心,這不就是核子彈嗎?後果不堪構想;
②礦物分布通常遵循"物以類聚"的原則,那么地球內部的放射性元素分布(熱源)就會與地熱分布一致,顯然這不合情理;
③地下溫泉或岩漿(石頭)應該裹挾著很強的放射性物質,實際上沒有,所以說地熱的主要來源不可能是放射性元素蛻變。如果是第二種,一是體積收縮擠壓產生;二是本來是高溫體,冷卻至今形成熱量梯度分布,這種可能性是有的。我們認為也有第三種可能,即地球形成時溫度是均勻的而又不是十分高溫的物質,從45億年前至今,重力將地表低溫區熱能向地心轉移,使熱量形成梯度分布(中心約5000℃),逐步實現勢平衡。

引力“熵增減”

一種解釋

引力的“熵減”現象說法——熱環論
科學家們通過長期對熵理論的研究,提出了“熱環論”(又可稱“熱動論”),完成了恩格斯的遺願。
熱環論指出:可壓縮流體的靜力學方程,即勢焓(勢能+焓)平衡規律指出,在引力場中,相同質量的流質其擁有的勢焓值均為同一常數,這就意味著當流質勢能大時其焓值小(溫度低),相反,當勢能小時其焓值大(溫度高),如果星體中心的勢焓值比外圍低時,引力將迫使外圍低溫區熱量向中心高溫區傳導轉移,以趨於勢焓平衡。又根據熱輻射定律可知,熱輻射僅由溫度決定,不受引力影響。上述兩類因素是熱循環的動力,即熱量在引力的幫助下從低溫3k傳導至高溫億萬k(太空中或星體內部都存在著溫度梯度這個客觀事實),再以輻射的方式逸散到太空中去,就這樣循環往復以至無窮,這就"熱環論"描述的現象。
白矮星為例,白矮星內部無熱源發光是因為星體引力能從太空雲集低溫熱能。任何星體與太空間都存在著相反的熱循環轉移過程,即使是具有內部熱源的星體也疊加著上述熱循環過程(比如恆星的聚變熱源)。

另一種解釋

引力還是“熵增”現象——熱寂說
這就是著名的“熱寂說”...可以看出來,引力同樣可以解釋為“熵增”現象:質量的引力把原來的物質從低溫加熱到高溫,這個加熱的能量來自物質本身也就是質量的消耗(有可能來自原子核的質量減少,也可能來自電子能級的消耗等因素,下面有分析)。但宇宙的質量一開始怎么來的?至今還在假設當中,這也就是宇宙的誕生之謎。不過能推斷出的就是:宇宙這些“天生”的質量其實就是“負熵”,宇宙一直都是在“負熵”變“正熵”的過程,即質量消耗而變為熱能的過程,所以宇宙如果還有質量,就不會是我們所說的“死亡終結”,有質量就可以創造熱能,從而獲得非熱能形式的能量。所以質量的引力把原來的物質從低溫加熱到高溫,並不是違反熱力學第二定律的:“自發性把熱從低溫物體轉移到高溫物體”,而是消耗了自身獲得熱能,由熵增而變高溫的(這也就是我們所使用的所有能量的本源)。而把熱能還原為質量,而不引起其他影響的,才是“絕對熵減”。
原子與原子之間的分隔是因為有電磁力(電磁力是虛光子傳遞產生的),遠離原子核的電子能級高。以地球為例,地球內部物質被高度擠壓,所以經過壓縮,電子“被迫”降低能級,這就會釋放出能量(電子向低能級躍遷,虛光子轉變為光子釋放出來),釋放的能量又被周圍的物質吸收,導致周圍物質的電子能級升高,運動更劇烈,但運動空間被引力限制,所以形成一個“惡性循環”,也可以看成是一個平衡(用來抵禦壓縮,減緩體積縮小速度):釋放能量,然後吸收,再釋放...逐漸向外圍的低溫區域傳遞,代價就是體積會不斷縮小緊密,最終達到一個“度”,產生新的質變。不過如果不是恆星這樣因為引力巨大,已經快速的經過了一次量變與質變的轉化的(由巨大引力實現的內部更高溫,造成聚變,也就是觸發了更深層的能量釋放...),其他溫和的小天體,比如地球,經歷的這個過程是非常漫長的,這也就導致了來自外界的變數干擾會成為必然,所以僅僅只能理論上成立。

相關詞條

熱門詞條

聯絡我們