指數自回歸模型

指數自回歸模型

指數自回歸模型(exponential autoregressive models)是一種非線性模型,它是尾崎(T.Ozaki)和哈根(V.Haggan)在1978年為研究非線性隨機振動理論而提出的。非線性時間序列包含了非線性系統中各種變數的過去信息,同時蘊含著大量關於系統演變的規律和趨勢。這樣的時間序列往往是不可逆的、非線性相依的、偏態的,並且存在著廣泛的頻幅相依特性。為此,20 世紀80 年代初尾崎(Ozaki)和哈根(Haggan)提出了指數自回歸模型(exponential auto-regressive model,EXAR 模型),它可以復現非線性隨機振動的某些特性,反映時間序列的頻幅相依性。用加拿大山貓數據建立EXAR模型,結果表明、擬合的殘差方差比門限自回歸模型和AR(2)模型都小,且求得的山貓時間系列周期與實際情況相吻合。指數自回歸模型在工程中已有一些套用。

基本介紹

  • 中文名:指數自回歸模型
  • 外文名:exponential autoregressive models
  • 所屬學科:數學(統計學)
  • 簡寫:EXAR 模型
  • 所屬問題:時間序列分析
結構及特點,特點,參數估計,

結構及特點

EXAR模型源於二階非線性隨機振動微分方程
式中,
表示對時間
二階導數
元表示對時間t的一階導數;“阻尼力”
和“恢復力"
是非線性函式;
為獨立白噪聲。當
是線性函式時,則式(1)為二階線性微分方程。當
為白噪聲時,輸出
含有的周期隨振幅變化,即所謂的“頻幅相依”。尾崎根據上述效應提出了二階指數自回歸模型:
式中
分別依賴於
這種依賴關係為指數函式形式:
推而廣之,m階EXAR模型的結構為:
式中
為模型參數。

特點

EXAR模型的特點:
①能刻畫非線性特性。模型參數
是隨時間變化的,其值取決於
同時又刻畫了
之間呈指數形式的非線性關係。
②能產生突躍現象。從
中可看出,當
很大時
趨近於
而當
很小時
近似等於
其間變化關係是連續的。當
從最大值到最小值時就產生突躍現象。

參數估計

在非線性時間序列分析中,參數辨識的方法主要有最小二乘法極大似然法等。哈根基於最小二乘法給出了EXAR模型的參數辨識方法:
(1) 先固定
值,按最小二乘法作
的歸分析,估計
。用AIC確定模型階數m。
(2) 在一定範圍內取不同
值,重複第(1)步的做法,得到不同
值對應的參數和AIC值。
(3) 選擇AIC最小對應的模型參數即為所求。
上述參數辨識方法是可行的,但計算量大,且不一定能找到最優點,因而不是一種較好的方法。為此,提出了參數辨識的AGA,它包括如下兩個步驟:
第一步: 用自相關分析技術確定EXAR模型的自回歸項。時間序列
延遲k步的自相關係數
的方差隨k的增大而增大,
的估計精度隨k的增加而降低,因此k應取較小的數值。
根據
的抽樣分布理論,在置信水平
的情況下,推斷
之間的相依性是否顯著。EXAR模型的自回歸項應與這些相依性顯著的
項相對應,其中相依性顯著的最大延遲步數即為模型的階數m。
第二步:用AGA直接在相對殘差平方和最小化下同時最佳化模型各參數,即求如下最小化問題:
式中,
為擬合值。

相關詞條

熱門詞條

聯絡我們