基本介紹
定理介紹,定理證明,相關推論,影響意義,
定理介紹
對於一個非平凡圖
,滿足![](/img/a/2e1/wZ2NnLzAzMxQWOxYWZjFWOlRTOlR2MidzMwgTM5QjYkZjZjF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![惠特尼不等式 惠特尼不等式](/img/4/af2/U2N0YjZ4ETOzAzNmBDZ1cjN3E2Y2kzYlNWZ5EmZkFTMjJzN1MDZyYWOkNjNvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/2e1/wZ2NnLzAzMxQWOxYWZjFWOlRTOlR2MidzMwgTM5QjYkZjZjF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![惠特尼不等式 惠特尼不等式](/img/4/af2/U2N0YjZ4ETOzAzNmBDZ1cjN3E2Y2kzYlNWZ5EmZkFTMjJzN1MDZyYWOkNjNvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
惠特尼不等式表述
定理證明
右半邊
由於圖
的最小度為
,於是考慮
中度為
的點
,
。從
中刪除與
相接的所有邊,則
成為孤立點,即與
相接的所有邊構成了一個割邊集或稱為不連通邊集 (disconnecting set)
,且該不連通邊集的大小
。根據邊連通性的定義,
。![惠特尼不等式 惠特尼不等式](/img/f/ca0/UWNiJzNiJjYygTO1QzMhJWNxYmM4cTN1MjMxkzNkNGM4MTN2ADOhNWZ3EjYvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/d0c/wZ2NnL2YzYkljN2gDOxAzMjZ2NlNWYkZGMwgDNjJDZ3cTMmJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/d0c/wZ2NnL2YzYkljN2gDOxAzMjZ2NlNWYkZGMwgDNjJDZ3cTMmJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/9db/wZ2NnLmBjY1ETZkdjMyMWNjZWO2ImMzkDO5IDZxEDNmlzMjZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/fcf/wZ2NnLlRjMkVTOlVWMzQmZjZjZ4MGO3AjZwUjMwUTOzMDOiJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/9db/wZ2NnLmBjY1ETZkdjMyMWNjZWO2ImMzkDO5IDZxEDNmlzMjZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/9db/wZ2NnLmBjY1ETZkdjMyMWNjZWO2ImMzkDO5IDZxEDNmlzMjZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/9db/wZ2NnLmBjY1ETZkdjMyMWNjZWO2ImMzkDO5IDZxEDNmlzMjZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/8a2/wZ2NnLzMjN2MDZkJTY1YTOjFGOmJDM4gTMhNjNiNjMkRWN0IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/1d0/wZ2NnLwETNxYDO5cDNwQTYhRWZkJ2YiJDOjlTMwIWM2E2YhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![惠特尼不等式 惠特尼不等式](/img/f/ca0/UWNiJzNiJjYygTO1QzMhJWNxYmM4cTN1MjMxkzNkNGM4MTN2ADOhNWZ3EjYvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
右半不等式的證明
左半邊
考慮圖
的最小不連通邊集
,只需證明存在圖
的一個割集
,它們的大小滿足
即可。
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/74c/wZ2NnLhlTM3I2N5YjZ1EjNlZjM0UjMzMjYilTMhZWYwMDZ2EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
對於
,
將圖
分割成至少兩個連通分量 (connected component)
,這裡取
為連通分量,
為剩餘部分(不一定為連通分量)。令
,顯然
中不包含任何邊,否則從
中除去該邊,則得到比
更小的不連通邊集,與
是最小的不連通邊集矛盾。![惠特尼不等式 惠特尼不等式](/img/a/c79/QWYhNzNlVTNjVmY3UGMmFWZ2YWYzIWYllTZxADMxQGO5Q2Y3M2YzEGZkZmMvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/656/wZ2NnL3YGZ2EmN2ADM2YTMiZGMjFWZ3E2YyQmZkZWMlNWYmdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/739/wZ2NnLxcjZyQTOlBTYlZDOjJ2NlZTOwQTZwADZ1cjY3M2MyIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/bc1/wZ2NnL4EWNwQWYxUWZwgTN0EDMwEWMzIGNjBjZwYjMhNWZ3U2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/e19/wZ2NnLkJzNlFmZzUDM1QzYwMTZkR2YhlzY3M2Y2UmYzYDM2kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/e19/wZ2NnL4QmYwgzN4Q2MxE2YlNWO2ATM1IGNkBTOxI2MkNWNzMzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![惠特尼不等式 惠特尼不等式](/img/a/c79/QWYhNzNlVTNjVmY3UGMmFWZ2YWYzIWYllTZxADMxQGO5Q2Y3M2YzEGZkZmMvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
最小不連通邊集的分割情況
- 如果,即除去中的點外還有其他點,則可以作為分離與的割集。考慮的大小,斷言。這是因為根據上述分析,中不包含任何邊,而,所以中任意一點均與中至少一條邊相接。於是。
- 如果,即除去中的點外沒有其他點,此時並不能直接作為割集。任取一點,考慮的鄰居組成的集合。顯然分割了與其他部分,所以可以作為圖的割集,斷言。這是因為,若的鄰居為中的點,則它們之間的邊即為中的邊,所以對於這樣的鄰居,中一個點對應了中一條邊;若的鄰居也是中的點,則一定存在與該鄰居相接的在中的邊,所以對於這樣的鄰居,中一個點對應了中至少一條邊。於是。
![惠特尼不等式 惠特尼不等式](/img/c/107/MmYiVWYmJzM1MTMiV2MiFWO4cTOlNmM4EDOjZjZiN2Y4UTMkJDOjlTZkJjYvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
連通分量中沒有其他點的情況
相關推論
關於3正則圖的推論
推論證明
根據惠特尼不等式,已有
,只需證明
。
![](/img/b/c31/wZ2NnLlVTYygDN0AjZ1UmZklzYzgzNklzYhNDZiFjMwYDN0IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/81f/wZ2NnLkRWNiVjYwQWO1gjMlZ2Y5cTN3EzNlRmYhRmNxYjMmlzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
考慮圖
的最小割集
,由於圖
是3正則圖,則
與餘下被分隔的部分之間的連線只有最多三種類型。對於第一種類型,
中的點與連通分量
相連1條邊,與剩餘部分相連2條邊,則取與連通分量
相連的1條邊加入集合
;對於第二種類型,
中的點與連通分量
相連2條邊,與剩餘部分相連1條邊,則取與剩餘部分相連的1條邊加入集合
;對於第三種類型,
中的點與連通分量
相連1條邊,與剩餘部分相連1條邊,與
中的另一點相連一條邊,則取與連通分量
相連的1條邊加入集合
。顯然,
,且
是圖
的不連通邊集。於是
。![惠特尼不等式 惠特尼不等式](/img/2/65f/QDOkdTOwYmYmFjMmZDNkFTY5UjZxEjZ0MjZjBTZwIzNyIDO5ITNwkzNmhDMvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/f17/wZ2NnLiZjN1UWMyEDZjJDO4cTY2QmM4YWOjF2MjhjZ0YWYhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/f17/wZ2NnLiZjN1UWMyEDZjJDO4cTY2QmM4YWOjF2MjhjZ0YWYhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/f17/wZ2NnLiZjN1UWMyEDZjJDO4cTY2QmM4YWOjF2MjhjZ0YWYhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/f17/wZ2NnLiZjN1UWMyEDZjJDO4cTY2QmM4YWOjF2MjhjZ0YWYhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/cf2/wZ2NnL3MWN3UzYhJDO0MmMxYDMxQzN2UDN5UDM0EDOmRmYhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/f17/wZ2NnLiZjN1UWMyEDZjJDO4cTY2QmM4YWOjF2MjhjZ0YWYhBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/b3b/wZ2NnL3MTM0ImZ3U2M3kTO1IDNkJzNihTMzEmM2cDZhFzYmFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/16a/wZ2NnL2UjYhFDZyEDMlJDMjZTM3QzM3I2MyITY0EGZwQzNkF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5b3/wZ2NnL2EjN3gDZxcjM0QmYxYmYhdTZ2ETN2IjNjVWYwUWOxEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/085/wZ2NnL2ETO4YGN4YTYiJGZkJzNmNmZ5UzM3UTMkhTM1UDZxgzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![惠特尼不等式 惠特尼不等式](/img/2/65f/QDOkdTOwYmYmFjMmZDNkFTY5UjZxEjZ0MjZjBTZwIzNyIDO5ITNwkzNmhDMvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
3正則圖的割集與不連通邊集
影響意義
一方面,該不等式提供了三個圖的基本量之間的大小關係,為其他不等式以及定理提供了放縮方向;另一方面,該不等式也反映了”高連通性需要圖較為稠密”的組合直觀。