右極限就是函式從一個點的右側無限靠近該點時所取到的極限值,且誤差可以小到我們任意指定的程度,只需要變數從坐標充分靠近於該點。
函式在一點處極限存在時,函式在此處的左極限和右極限均存在,且左右極限相等。
基本介紹
- 中文名:右極限
- 外文名:right limit
- 定義:從一點右側無限靠近時的極限值
- 對應概念:左極限
- 套用領域:微積分
- 極限符號:lim
定義,性質,
定義
假設
是定義在區間
上的函式,如果下列準則成立:
![](/img/8/4e3/wZ2NnL3QmN1ATOxQDOwUTNjNzM1QzNlhDM3QTZ3M2MmVGM1MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/06e/wZ2NnL5AjNwIjN0EGOyQ2Y1UWMmdzYyMTNxYWZ1MGMyIjN1QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
任意給定
,能夠找到
,使得滿足不等式
的一切
,恆有
。
![](/img/1/1ec/wZ2NnL3IzY1IGMkZDOhNWMjNWMxgTMhNzNlF2NmFGZkNTO3UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/fa8/wZ2NnLycjZwQjZjJGM2QTZwATOlVDNwkTZ3IWOlVmN5ADOwgzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/ac9/wZ2NnL1ADNkBjZ2EGM4UGMhdDM5gzMmZGM5YmNhFjY2gDZ5MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/d90/wZ2NnL0Q2YyUzM2UDNxImNlFWZjNWZ4IDM0I2NkVDOxUzN2QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/1a5/wZ2NnL0MWOlVmMyIDMilDNxADZxMjMlRjZiVDM3U2YygzYjJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
則稱當
由右邊趨於
時,收斂於極限
。記為
。
![](/img/8/d90/wZ2NnL0Q2YyUzM2UDNxImNlFWZjNWZ4IDM0I2NkVDOxUzN2QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/0e8/wZ2NnLmJGZiljYmBjM4YjYiRTNwEGOhBDZmdTMmJWZ5gDZ4gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/a32/wZ2NnLmZGZ1QmZ0czM2QWM3MDO1UjY2UmNzkjMjhjMmBjZyM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/18d/wZ2NnLzATNzEjMyYTYkdzN1QTN4IDMzkDMkJmYlNGMyYGMjF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
數值
是
與
之間的距離,我們可以認為它是用
近似表示
所產生的誤差。因此
的定義,相當於斷言:用
近似表示
所產生的誤差可以小到我們任意指定的程度,只需要
從坐標充分靠近
。
![](/img/3/0d1/wZ2NnLycTZyMTOhFWM3gjMkV2YldzY5cTYxETZzADO0YjNyU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/a32/wZ2NnLmZGZ1QmZ0czM2QWM3MDO1UjY2UmNzkjMjhjMmBjZyM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/a32/wZ2NnLmZGZ1QmZ0czM2QWM3MDO1UjY2UmNzkjMjhjMmBjZyM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/18d/wZ2NnLzATNzEjMyYTYkdzN1QTN4IDMzkDMkJmYlNGMyYGMjF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/a32/wZ2NnLmZGZ1QmZ0czM2QWM3MDO1UjY2UmNzkjMjhjMmBjZyM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/d90/wZ2NnL0Q2YyUzM2UDNxImNlFWZjNWZ4IDM0I2NkVDOxUzN2QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/0e8/wZ2NnLmJGZiljYmBjM4YjYiRTNwEGOhBDZmdTMmJWZ5gDZ4gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![右極限 右極限](/img/e/5cc/AZ4EmZ2Q2N4IGOxEWMwMGOmFjMyETOmZ2M3UmMkVWY0QjYhRWY3czMvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
性質
左極限與右極限統稱單側極限。
①函式
當
時,極限存在,若且唯若函式
在
處左極限和右極限都存在,且兩者相等。用數學表達式表示為:![右極限 右極限](/img/e/c5f/gYwADZlBjM3IjM4kjM1IWO0YWO5gTZ5QGNhBjMhRjZ0IjMkZjNxIDNvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/1cc/wZ2NnLlNWNmJWNhFTY4MGM2kDOmZGMhBjNjdDMmBjZzkDZwkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/1cc/wZ2NnLlNWNmJWNhFTY4MGM2kDOmZGMhBjNjdDMmBjZzkDZwkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![右極限 右極限](/img/e/c5f/gYwADZlBjM3IjM4kjM1IWO0YWO5gTZ5QGNhBjMhRjZ0IjMkZjNxIDNvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/659/wZ2NnL1UWOlRGO3czMzMWY0MGMwITYzkDZ4QmN3UmZxcTN4gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/0bb/wZ2NnL2EjYzUzN2kTO3EzM0YjZyUjYkdTN2U2M5MGO4YWO0Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/bf3/wZ2NnLzEGZmNWMzcTM4ETMmZDMhBzMjV2MkNjZ1UWZmBTNwczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/302/wZ2NnL1YGNlVjNlF2NjFWM3EDMlRjZxQ2YjJGZ5ITMkJzNmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/932/wZ2NnLyETZ2M2MzAzMyATM1gTNiZjNzUTN4MGZ5EWZkJDMmhzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
②函式的左極限和右極限不一定相等,例如:
![](/img/f/f79/wZ2NnL1MzN1QmN3Y2NxczYlNWMmVWZxAzY3kTYiVzYyITZzQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/8b9/wZ2NnL5kjN4UmZiVDZ4gjN1UGZmVGN0ATYmV2NkNWZ4IWN4kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
此時稱函式在該點有“跳躍”。
③左極限與右極限只要有其中有一個極限不存在,則函式在該點極限不存在。