基本介紹
- 中文名:動物行為學
- 外文名:animal ethology
- 提出者:康勒德·羅倫茲
- 套用學科:生物生態學
- 適用領域範圍:動物的行為
- 研究範圍:動物對環境和其他生物的互動等
相關專家
研究歷史
發展
現代進展
行為生態學
相關研究學者
奧地利學者
荷蘭學者
實驗方法綜述
記憶的腦機制非常複雜,迄今仍不清楚。早在20世紀40年代末,著名神經外科醫生Wilder Penfield 第一個獲得證據表明,記憶的加工可能是在人腦的某些特殊部位進行。他從上千例的病人觀察到,電刺激病人的腦顳葉皮層(temporal lobes)會產生一連串對早期經驗的回憶,病人稱之為“經驗反應”(experiential response)。幾年後一次偶然的機會,為了給一個患癲癇長達10年的病人施行腦手術治療,Penfield將病人雙側的海馬·杏仁核和部分顳葉皮層切除。術後發現,病人的癲癇症狀大為改善。但出乎意料的是,病人的記憶同時受到破壞性的損害。雖然病人保留了幾秒到幾分鐘的短期記憶,且對手術前的事件有非常好的“長期記憶”,但是,他卻不能將短期記憶轉化為長期記憶。對人·地點或物體等信息的保持不超過一分鐘。而且,他的空間定位能力也大大受到削弱,甚至花了長達一年時間才學會走一條圍繞一棟新房的路而不至迷路。事實上,所有因手術或疾病使內側顳葉的邊緣結構受到廣泛損害的病人都具有類似的記憶缺陷。這些結果說明,大腦邊緣系統在記憶調節中發揮重要作用。
此後近半個世紀的研究表明,腦內至少存在5個不同的結構系統相對特異性地參與學習記憶的調節,包括海馬、杏仁核、皮層(尤其是鼻周皮層,perirhinal cortex)、小腦和背側紋狀體。針對這些腦結構建立了相應的具有一定特異性地學習記憶的行為測定方法。海馬是空間記憶的最重要的調節腦區,同時也參與情緒記憶的調節。毀損海馬回導致空間記憶的完全缺失,情緒記憶也會減弱,但不會完全消失。這是因為情緒記憶主要由杏仁核調節。測定杏仁核依賴的記憶主要用條件恐懼(fear conditioning)法;動物行為實驗方法綜述而測定海馬依賴的記憶方法則很多,包括各種迷宮和抑制性迴避(inhibitory avoidance)實驗等。鼻周皮層是調節視覺物體記憶(visual object memory) 的特異性鬧區,常用物體認知模型(object recognition)檢測。小腦是調節與骨骼肌反應有關的經典反射的特異性腦結構,眨眼反應(eyeblink conditioning)模型對小腦依賴的記憶有很高的特異性。紋狀體對刺激-反應習慣(stimulus-response habit)的學習記憶過程其重要作用,主要調節與藥物濫用有關的學習記憶。測定紋狀體記憶的方法很少,主要使用贏-留放射臂迷宮(win-stay radial arm maze)法。紋狀體毀損會導致動物在這一模型上的記憶操作障礙,而毀損海馬或杏仁核對這種記憶沒有明顯影響。說明贏-留放射臂迷宮法對紋狀體記憶具有特異性。
儘管記憶的發生機制仍不清楚,但越來越多的證據表明,環磷酸腺苷-蛋白激酶A(cyclic AMP-protein kinaseA,Camp-PKA)信號系統對記憶起著重要的調節作用。激活與刺激性G蛋白(Gs)相偶聯的受體會刺激腺苷酸化酶的活性,因而使cAMP形成增多,並激活PKA.PKA使cAMP反應單元結合蛋白(cAMP-responsive-element-binding protein, CREB)磷酸化並激活,從而促進與記憶相關的基因表達,最終使記憶增強。此外,分裂素激活蛋白激酶/細胞外信號調節激酶(mitogen activated protein kinase,MAPK/extracellular signal-regulated kinase,ERK)信號通路也以類似的磷酸化方式調節CREB的活性,進而調節記憶。因此,除了用腦部結構毀損的方法從解剖上去除某一特定的腦內結構對記憶的調節功能以外,凡是能影響上述信號通路功能的藥物(如NMDA受體拮抗劑MK-801和MEK抑制劑U0126減弱記憶;4-型磷酸二脂酶(type-4phosphodiesterase,PDE4)抑制劑則增強記憶)或有關的處理(如轉基因或基因敲除或下調)均可影響學習記憶過程。
學習記憶研究是當今生物醫學界最為熱門的領域之一。這方面的發展可謂日新月異。新的或經改良的研究方法和手段層出不窮。因此,本章不可能把所有有關學習記憶的研究方法逐一進行描述,只是選擇一些有代表性的常用方法加以介紹。此外,所用儀器設備也不只局限於本章所介紹的內容。在同一實驗中,不同實驗室所用儀器設備會有所不同,但實驗結果應該一致。動物行為實驗方法綜述