功率譜

功率譜

功率譜是功率譜密度函式的簡稱,它定義為單位頻帶內的信號功率。它表示了信號功率隨著頻率的變化情況,即信號功率在頻域的分布狀況。功率譜表示了信號功率隨著頻率的變化關係。

常用於功率信號(區別於能量信號)的表述與分析,其曲線(即功率譜曲線)一般橫坐標為頻率,縱坐標為功率。周期性連續信號x(t)的頻譜可表示為離散的非周期序列Xn,它的幅度頻譜的平方│Xn│2所排成的序列,就被稱之為該周期信號的“功率譜”。

基本介紹

  • 中文名:功率譜
  • 外文名:power spectrum
  • 別稱:功率譜密度
  • 提出者:傅立葉 
  • 提出時間:1822年
  • 適用領域範圍:電子科學
基本簡介,概念,定義,性質,套用,周期運動,

基本簡介

傅立葉級數提出後,首先在人們觀測自然界中的周期現象時得到套用。19世紀末,Schuster提出用傅立葉級數的幅度平方作為函式中功率的度量,並將其命名為“周期圖”(periodogram)。這是經典譜估計的最早提法,這種提法至今仍然被沿用,只不過現在是用快速傅立葉變換(FFT)來計算離散傅立葉變換(DFT),用DFT的幅度平方作為信號中功率的度量。
周期圖較差的方差性能促使人們研究另外的分析方法。1927年,Yule提出用線性回歸方程來模擬一個時間序列。Yule的工作實際上成了現代譜估計中最重要的方法——參數模型法譜估計的基礎。
Walker利用Yule的分析方法研究了衰減正弦時間序列,得出Yule-Walker方程,可以說,Yule和Walker都是開拓自回歸模型的先鋒。

概念

由於功率沒有負值,所以功率譜曲線上的縱坐標也沒有負數值,功率譜曲線所覆蓋的面積在數值上等於信號的總功率(能量)。

定義

功率信號
在時間段
上的平均功率可以表示為
如果
在時間段
上可以用
表示,且,
的傅立葉變換為
,其中
表示傅立葉變換。當
增加時,
以及
的能量增加。當
,此時
可能趨近於一極限。假如此極限存在,則其平均功率亦可以在頻域表示,即
定義
的功率密度函式,或者簡稱為功率譜,其表達式如下。

性質

功率譜密度的常用性質為:
(1)功率譜密度函式
是實的;
(2)功率譜密度是非負的,即
(3)功率譜密度的逆傅立葉變換是信號的自相關函式;
(4)功率譜密度對頻率的積分給出信號
的方差,即
上式中
表示求方差的算符,
表示求均值算符
表示
均值

套用

功率譜密度定義給出了區別於時域的功率描述方法,常套用於統計信號處理,介紹兩個基本套用
(1)白噪聲與有色噪聲的定義。
若信號的功率譜
等於常數,即,則隨機過程
稱為白噪聲,反之則稱為有色噪聲。
(2)利用其與自相關函式的關係求信號的自相關函式。

周期運動

周期運動在功率譜中對應尖鋒,混沌的特徵是譜中出現"噪聲背景"和寬鋒。它是研究系統從分岔走向混沌的重要方法。 在很多實際問題中(尤其是對非線性電路的研究)常常只給出觀測到的離散的時間序列X1, X2, X3,...Xn,那么如何從這些時間序列中提取前述的四種吸引子(零維不動點、一維極限環、二維環面、奇怪吸引子)的不同狀態的信息呢? 我們可以運用數學上已經嚴格證明的結論,即擬合。我們將N個採樣值加上周期條件Xn+i=Xi,則自關聯函式(即離散卷積)為 然後對Cj完成離散傅氏變換,計算傅氏係數。 Pk說明第k個頻率分量對Xi的貢獻,這就是功率譜的定義。當採用快速傅氏變換算法後,可直接由Xi作快速傅氏變換,得到係數 然後計算 ,由許多組{Xi}得一批{Pk'},求平均後即趨近前面定義的功率譜Pk。 從功率譜上,四種吸引子是容易區分的,如圖12 (a),(b)對應的是周期函式,功率譜是分離的離散譜 (c)對應的是準周期函式,各頻率中間的間隔分布不像(b)那樣有規律。 (d)圖是混沌的功率譜,表現為"噪聲背景"及寬鋒。 考慮到實際計算中,數據只能取有限個,譜也總以有限分辨度表示出來,從物理實驗和數值計算的角度看,一個周期十分長的解和一個混沌解是難於區分的,這也正是功率譜研究的主要弊端。

相關詞條

熱門詞條

聯絡我們