基本介紹
- 中文名:五五法
- 定義:即5×5w1h
- 何處:where
- 何時:when
質問技巧,套用10原則,
質問技巧
(1)對“目的”(what)的質問:
做了些什麼?
是否可以做些別的事物?
為何要這么做?
做些什麼較好?
這一質問的主要目的是在刪除不必要的動作。
目的是什麼?條件是什麼?哪一部份工作要做?
重點是什麼?什麼有關係?賣什麼東西最合宜?
規範是什麼?功用是什麼?等等
例:經濟成長國民生活水準大幅度上升,買小汽車的人也逐漸增多。因此每逢假期高速公路車滿為患,行車速度減慢,因而有慢速公路之譏。形成慢速公路的原因除了車子多以外,最為人所詬病者為收費站收費的問題所引起的塞車現象。雖然對交通是門外漢,不過站在探討問題的立場可以嘗試以5w1h的方法,以客觀態度來檢討一下問題所在:
要設定“收費站”的目的何在?
首先應做調查的工作,看看世界各國有收費的高速公路占多少比例。
他們設立收費站的目的是什麼,是為取得維護保養的資金來源嗎?是為償還高速公路之投資成本嗎?他們是如何收費,依據什麼類別來收費,收費的方式採用何種方法,收費站地點設在那裡,等等。什麼原因使得高速公路可以不必收費,不收費時,道路的維護保養的資金是從那裡來呢?對來說,如果高速公路不收費的話是不是可以?如果是可以的話,那根本就不要考慮設立“收費站”的問題,這是從剔除的觀點來達到改善的目的。如果說因為有種種現實的理由使得仍然必須要採取收費的方式,就可以繼續往下探討。
(2)對有關“人”(man)的方面的問題:
改變人員的配置組合及工作分擔(分工)方式。將操作者同事間的關係,操作者與機械設備或工具的關係予以改變,檢視其效率是否能提高。
為此,宜進行以下的質問:
是誰做的?為何由他做?是否可由別人做?誰最適合做這些事?為什麼不把它授權股長去決定?誰來辦最方便?誰不可以辦?誰是顧客?誰會贊成?誰疲忽略了?誰是決策人?誰需要來受訓?誰是未來的顧客?等等。
五五法
又依駕駛員所駕的車種類別,也可以加以統計分類,各有多少比例的小客車、聯結車、大貨車、大客車在通行,從中研究是否可以減少不同之收費類別。
(3)對“工作順序”(when)的質問:
變更時間的順序。將操作發生時刻、時期,耗費時間予以變更,是否可以掌握些改善的頭緒?為此,宜進行以下之質問:
在何時做的?為何要在當時做?改在別的時候做是否更有利?在何時做最好?何時要完成?需要幾天才算合理?何時最切時宜?將來有何轉變?等等。這一質問的目的是在尋求可能的“合併”,“重組/變更”的改善方向。
有關“何時”的質問高速公路行車的流量通常在某些時段例如上下班時間會較大,而在夜間通常會較少,為使流量能較均勻化,是否可考慮在夜間實施減半收費或免收費的方式,來紓解某個時段過份擁擠的現象,或在連續假期期間採取免收費的方式來克服這些問題。
(4)對地點(where)的質疑
變更場所,或者場所內物品布置之重新組合。應使操作,人員,以及物品之位置或方向,均在於適正的狀態下。為此,宜進行以下的問題:
在何處做的?為何要在該處做?在別處做,其效率是否更高?在何處做好?何地做最適宜?從那裡買?還有什麼地方可買?怎樣從甲地搬運到乙地?何地銷貨量減少?等等。此一質問的目的在尋求“簡化”及“改進”的改善方向。
(5)對方法的質問
現行的收費站依不同的車型類別名別設立專用的收費車道,不同的車種不能走相同的車道,因此有時會發覺有些車道大排長龍,有些則等著車子來監,為什麼不能設法簡化票種類別,使每一車道能適合任何車子通行收費,甚至可以考慮南北向收向收費車道的彈性調撥車道的方式來解決這些問題。經過以上之探討,再重複連續檢討,可以產生許多可行的改善方法,再依輕重緩急,難易度及經濟效益問題,選擇較可行的方法出來。
套用10原則
在運用5w1h質問法之後,吾人已分析得到問題之所在,以及改善的基本方法。但這還是不夠的,應該有一些協助吾人產生創意的方法或技巧。這些方法,技巧可歸納成下列10項法則(產生創意的思考法則):
(1)相反法則 (6)更換法則
(2)並圖法則 (7)替代法則
(3)大小法則 (8)模仿法則
(4)例外法則 (9)水平法則
(5)集合法則 (10)定數法則
相反法則
將現行的方式逆向倒過來做,將會變得如何呢?里外調換,上下顛倒,職務互換,作業次序反轉,由左至右改為由右至左。
例:如下圖片,看看是什麼東西?
在白的部份可以看到是一個花瓶。在黑的部份可以看到一對情侶面對面默默無語的感人情境。同一件事試著由相反的途徑去思考會得到不同的結果。除了原因與結果外,大部份的事物都有其相反的一面。所以從相反的立場來加以思考,往往能獲得很多有用的創意。有關相反的自問很多,例如:
以否定來代替肯定,會產生什麼結果?與其相反的東西是什麼?改變方向如何?上下顛倒時會怎樣?
顛倒情節,是好萊塢常用的名詞。在這裡,一切的事實都顛倒,影片中出現的不是狗咬人的場面,而是人咬狗的鏡頭。
五五法
劇作家就由這種顛倒的想法中,得到許多的靈感。又,“如果以顛倒的話來表達,會產生什麼效果?”,這是幽默作家常用的筆法之一。說相反的話,是一種批評的技巧,它與揶揄和諷刺不同,是巧妙地表達自己意見的方法。對某一製品發表意見時。應該想:把安豎起來如何,把它反過來如何?某一位毛皮商就根據這種想法,來製造商標。他仍然把顛倒的商標縫在毛衣大衣上。這一點,不但能幫助他區別自己和別人所制的大衣,更重要的是,當這種大衣掛在椅背上時,不必顛倒過來,也能看清商標的名字。
美國奇異公司研究新的照明方法時,就思考如果光線不是由上往下照射,而是由下往上照射時,會產生什麼結果的問題。結果發明了能照亮餐桌的新型照明設備。這種照明設備在地板內,外表完全看不見燈泡,光線透過桌子的小孔,到達天花板的鏡子,鏡子便將柔和光線反射下來,照亮桌面。
並圖法則
將每一基本部份分解出來,再嘗試別種組合的方式,是否會有意想不到的效果呢?
將不同的人組合成一個小組工作效果如何?衣服及飾件如何搭配,才是最美觀?將意義、色彩、運動、聽覺、嗅覺、形式加以分解,再重組,又會如何?例如雞肉販通常把一隻雞分成好幾部分,把雞腳、翅膀、雞頭、雞腿,賣給各取所需之人,皆大喜歡。例:“妙妙蛋”,將下面的妙妙蛋嘗試組合成不同的形狀。把這妙妙蛋分解成如上的不同細節,再將這些細部嘗試做不同的組合,可以創造出許多不同有趣的造型,如下頁所示。
大小法則
改變尺寸形狀等的大小,看看其影響會變得如何呢?改為更大時的範疇有加與乘,縮小時則是減及除,根據這種原則,可以產生很多創意。
若是添加些什麼,去掉些什麼,或是加長、減短、增高、減底、變大、變小是否能有所不同呢?
可否將部份或全部做得小些?而不影響品質或價格?並且可增加效率。這項目是否太大?體積是否過於龐大?是否太重?是否可以重新塑造?
例外法則
的工作場所中,許多的工作報表是否有確實的必要呢?是否可以只針對有例外的現象時才加以管理呢?
集合法則
嘗試將不同的單元事物結合地一起,是否可以增加使用者的功用及效果?可以把那些創意結合在一起?將目的結合如何?把各種物質組合在一起如何?能與那一種材料結合?改成合金如何?
登山者所考慮的原則是背負的東西希望愈輕愈好,所必需攜帶的東西以應付各種野外事件之需求是愈多愈好。因此,在此種相互衝突的矛盾情況之下,必須將許多專門用途的工具,例如開罐器、小刀、鋸子、開瓶器、銼刀、剪刀等等必須用品,設法將之結合在一起稱之為百寶刀,以達到上述二個相互矛盾的目標。此種“集合”的東西一般來講,對不經常發生的事情是個很好的改善方式,但如果是經常要使用的工具,就必須考慮採用單一用途的設計方式,以發揮專門化的最佳效率之優點。
更換法則
將順序加以更換,效果是否會較好呢?它的後面應該加上什麼。
若是將形式改變,順序更動,日程變更,原因和結果改換的話,將會有不同的見解。
開車的人最怕在轉彎時,不能駛入專用的車道,待車子到達十字路口時,才知占用別人的左轉車道,阻塞交通被別人罵,甚至被交能警察開紅單子,主要的原因是駕駛者未能及早發覺指示方向的標語,因為傳統的國字是由上往下寫,而開車的方向是由下往上,所以待車子完成明了指示標語之意義時,已經到達十字路口太遲了。如果能將在馬路地面上的指示標語,更換成由下往上寫的方式,更換其順序,就可以克服這些困難。現在已經可以看到許多這樣的改善書寫方式的指示標語,這都是更換法則套用的最佳例子。自助餐廳改變食物的配置順序,有時候也能得到很好的效果。譬如說,一般人都認為甜點應該留在最後,其實,將甜點的順序排在前面,銷路反而更好。
替代法則
考慮用別的方式來替代現有的方式,會有什麼樣的結果呢?
人、物、機器、方式的替代可以嗎?呆、廢料可否加以利用呢?能否以較便宜的、較簡單的代用呢?尋找發揮相同機能的代用品。
往昔的國軍達難英雄的表揚,就是在勵在困難的情況之下能尋找一些替代品,以發揮繼櫝原不武器設備的功能。替代最有名的例子,就是阿基米實驗。他為了察知王冠是否由純金所製成,苦費心思,最後便採取能幫助獨創性思考的方法,進入浴室,泡在水中。然後他想到:當身體進入水中,可以使水出浴盆,而這些涌的水,便等於身體的體積。那么,如果將王冠放入水中,測定所湧出的水的體積,然後與已知的黃金重量一比較,即可知道王冠是否摻了銀。以後,他便利用此一方法來測定各種金屬。
模仿法則
模仿是創造的最佳觸媒,借著參考現有的東西加以思考,很容易引發新的創意出來。
什麼和此相仿?難道不能借用其它的意見嗎?過去沒有和此相仿的東西嗎?難道不能有所效法嗎?
足球是橄欖球的另一翻版。人類的一些劃時代的發明都是由無數的科學家他們先觀察自然界一切事物的現象,去模仿他們的動作而創造出來的。
模仿不是的最終目的,而是借著模仿來激發的創造力泉源。在很多情形下,創意都是以其原本的形態被使用。例如:“本月的圖書”俱樂部成立後,其它“本月的果實”“本月的餐點”“本月的趣味”也如雨後春筍般紛紛成立。又如歌星洪榮宏先生以“一隻小雨傘”一曲成名後,又有“一隻小皮箱”類似的歌曲,以“一隻……”表現出來,讓大家對他印象很深刻。
發揮自己的聯想力,考慮由水平的方向去思考,突破傳統及習慣上的束。
定數法則
將經常發生的事物予以制度化,可以產生許多簡化的效困及提高效率。
例:麥當勞快餐店→選單都固定沒有變化,只有幾項可供選擇;
中國餐館→侍者必須趨前→侍候等待點菜採用定數的法則,可以提高效率,所以在同一單位的面積之下,可以知道麥當勞快餐店所服務的客戶人數遠多於統式的中國餐館之服務人數。因此,將可變與不可變的事物區分處理,可獲得良好之結果。