基本介紹
- 中文名:馬爾可夫分割
- 外文名:Markov partitions
- 所屬學科:數學
- 所屬領域:動力系統(微分動力系統)
- 相關概念:基本集、有限型子移位等
基本介紹,馬爾可夫性質,注意事項,
基本介紹
馬爾可夫分割(Markov partitions)是深入認識基本集結構及動力系統在基本集上的動力行為的有力工具。所謂馬爾可夫分割,是將基本集∧分割為有限個內部不相交的“矩形”,在f的作用下,這些矩形一些方向被“拉長”,可以覆蓋它的像所在的矩形的對應方向,而另一些方向被“壓縮”,為它的像所在的矩形對應方向所包含,這有限個矩形,對應於序列空間的相空間的有限個元素,矩形在f作用下產生的雙邊無窮序列,對應於序列空間的元素,而序列的交
至多包含∧的一點,於是這一對應就通過∧上的分割建立起來,從而與有限型子移位建立了聯繫,馬爾可夫分割的確切定義如下所述:設∧是微分同胚的基本集,R是∧中直徑很小的子集,如果對任意,的局部穩定流形與y的局部不穩定流形恰交於一點,而且該交點在R中,則稱R為矩形。如果R是閉的,而且R作為∧的子集有,則稱矩形R是正規的。對於,令
這裡R的直徑與ε相比很小,∧上的馬爾可夫分割是∧上的正規矩形所組成的有限覆蓋,滿足:
而且其中。
1978年,鮑恩(R.Bowen)證明:緊緻的最大不可分解的雙曲不變集∧存在馬爾可夫分割。定義m×m矩陣為
若為m個符號的符號系統,是由傳遞矩陣A確定的有限型子移位。對每個定義
映射是連續滿射,且,同時,在集合
上,是一一對應的。
馬爾可夫性質
假設為上的一個同胚,且n1和n2為兩個滿足n1+n2=n的正整數,是上的一個閉球,是上的一個閉球,那么,M矩形
是馬爾可夫矩形之範例,在二維情形下,是一個正方形。
上有限個閉集稱為是關於F的一個馬爾可夫分割,或稱為具有馬爾可夫性質,如果下列條件滿足:
1.每個集合是范矩形的同胚像(即存在一個同胚從映射到上),的邊界上不同部分在 下的像可由類似於的標記來表示:
和
2. 的內部是互不相交的,。
3. 如果內部的像與的內部相交,那么在下的像是正規的(在這個意義下,我們說在F下的像關於是正規的),因而滿足下面四個條件:
(a) 交集是一連通塊;
(b) 像的內部與邊界映入的部分不相交,即
(c) 映出的邊界部分的像與下一個M矩形R;的內部不相交,即
(d) 對任意在F下的像在所有擴張方向上延伸穿過。
馬爾可夫分割中的集合稱為馬爾可夫矩形。
注意事項
1. 我們允許在F下的像僅僅與相交一次,因為在正規像的定義中我們假設是連通的,我們也允許對某些i和j是空的。
2. 通常每個是B的一個仿射像(即存在矩陣和固定點使得)。
3.馬爾可夫性質的定義與一維情形在本質上是一樣的,然而,一維映射只有一個擴張方向而沒有收縮方向。
4.在對一個映射選擇一個馬爾可夫分割時,馬爾可夫矩形及其擴張和收縮方向必須這樣選取,使得一個矩形的擴張方向經映射作用後都穿過與之相交的任一個矩形的擴張方向。
5. 多年來,馬爾可夫性質的套用一直局限於機率範疇內,直到20世紀60年代末70 年代初Ya.Sinai 和R.Bowen 才把這些思想引入到動力系統。