角平分線

角平分線

角平分線定義(Angle bisector definition)

從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線。

三角形三條角平分線的交點叫做三角形的內心。三角形的內心到三邊的距離相等,是該三角形內切圓圓心

基本介紹

  • 中文名:角平分線
  • 外文名:bisector of angle
  • 所屬學科數學
  • 相關術語內心
  • 性質:線上的點到兩邊的距離相等
  • 套用領域:數學
  • 實質:一條射線
定義,性質,判定,角平分線定義,角平分線性質,作法,內心,

定義

1.從一個角的頂點引出一條射線(線在角內),把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線(bisector of angle)。
2.角平分線是在角的型內及形上,到角兩邊距離相等的點的軌跡。

性質

1.角平分線分得的兩個角相等,都等於該角的一半。(定義)
2·角平分線上的點到角的兩邊的距離相等。

判定

角的內部到角的兩邊距離相等的點,都在這個角的平分線上。
因此根據直線公理。
證明:如圖,已知PD⊥OA於D,PE⊥OB於E,且PD=PE,求證:OC平分∠AOB
證明:在Rt△OPD和Rt△OPE中:
OP=OP,PD=PE
∴Rt△OPD≌Rt△OPE(HL)
∴∠1=∠2
∴ OC平分∠AOB

角平分線定義

在三角形中的定義。
三角形的一個角的平分線與這個角的對邊相交,連結這個角的頂點和與對邊交點的線段叫做三角形的角平分線(也叫三角形的內角平分線)。 由定義可知,三角形的角平分線是一條線段。 由於三角形有三個內角,所以三角形有三條角平分線。三角形的角平分線交點一定在三角形內部。

角平分線性質

在三角形中的性質。
1.三角形的三條角平分線交於一點,且到各邊的距離相等.這個點稱為內心 (即以此點為圓心可以在三角形內部畫一個內切圓)。
2.三角形內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例。
如圖,若AD是△ABC的角平分線,則 BD/DC=AB/AC 。
角平分線
證明:作CE∥AD交BA延長線於E。
∵CE∥AD
∴△BDA∽△BCE
∴BA/BE=BD/BC
∴ BA/AE=BD/DC
∵CE∥AD
∴∠BAD=∠E,∠DAC=∠ACE
∵AD平分∠BAC
∴∠BAD=∠CAD
∴ ∠BAD=∠CAD=∠ACE=∠E
即∠ACE=∠E
∴ AE=AC
又∵BA/AE=BD/DC
∴BA/AC=BD/DC
以上均為國中階段知識點及證法,詳見“角平分線定理”“三角形角平分線”。

作法

角平分線作法角平分線作法
方法一:1.以點O為圓心,以任意長為半徑畫弧,兩弧交角AOB兩邊 於點M,N。
2.分別以點M,N為圓心,以大於1/2MN的長度為半徑畫弧, 兩弧交於點P。
3.作射線OP。
射線OP即為所求。
證明:連線PM,PN
在△POM和△PON中
∵OM=ON,PM=PN,PO=PO
∴△POM≌△PON(SSS)
∴∠POM=∠PON,即射線OP為角AOB的角平分線
當然,角平分線的作法有很多種。下面再提供一種尺規作圖的方法供參考。
方法二:1.在兩邊OA、OB上分別截取OM、OC和ON、OD,使OM=ON,OC=OD;
2.連線CN與DM,相交於P;
3.作射線OP。
射線OP即為所求。

內心

任意三角形ABC中,
角平分線交於一點I,則我們稱此點I為三角形ABC的內心
三角形的內心恆在圖形內部,且到三角形之三邊距離等長。

相關詞條

熱門詞條

聯絡我們