綠色螢光蛋白

綠色螢光蛋白

綠色螢光蛋白(Green fluorescent protein,簡稱GFP),是一個由約238個胺基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色螢光。雖然許多其他海洋生物也有類似的綠色螢光蛋白,但傳統上,綠色螢光蛋白(GFP)指首先從維多利亞多管發光水母中分離的蛋白質。這種蛋白質最早是由下村脩等人在1962年在維多利亞多管發光水母中發現。這個發光的過程中還需要冷光蛋白質水母素的幫助,且這個冷光蛋白質與鈣離子可產生互動作用。

2008年10月8日,日本科學家下村修、美國科學家馬丁·查爾菲錢永健因為發現和改造綠色螢光蛋白而獲得了當年的諾貝爾化學獎

基本介紹

  • 中文名:綠色螢光蛋白
  • 外文名:Green fluorescent protein
  • 領域:生物學,光學
簡介,歷史,野生型GFP(wtGFP),GFP衍生物,結構,套用,螢光顯微鏡,參見,

簡介

綠色螢光蛋白(Green fluorescent protein,簡稱GFP),是一個由約238個胺基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色螢光。雖然許多其他海洋生物也有類似的綠色螢光蛋白,但傳統上,綠色螢光蛋白(GFP)指首先從維多利亞多管發光水母中分離的蛋白質。這種蛋白質最早是由下村脩等人在1962年在維多利亞多管發光水母中發現。這個發光的過程中還需要冷光蛋白質水母素的幫助,且這個冷光蛋白質與鈣離子可產生互動作用。
在維多利亞多管發光水母中發現的野生型綠色螢光蛋白,395nm和475nm分別是最大和次大的激發波長,它的發射波長的峰點是在509nm,在可見光譜中處於綠光偏藍的位置。綠色螢光蛋白的螢光量子產率(QY)為0.79。而從海腎(sea pansy)所得的綠色螢光蛋白,僅在498nm有一個較高的激發峰點。
細胞生物學分子生物學中,綠色螢光蛋白(GFP)基因常用做報導基因(reporter gene)。綠色螢光蛋白基因也可以克隆脊椎動物(例如:兔子)上進行表現,並拿來映證某種假設的實驗方法。通過基因工程,綠色螢光蛋白(GFP)基因能穩轉進不同物種的基因組,在後代中持續表達。現在,綠色螢光蛋白(GFP)基因已被導入並表達在許多物種,包括細菌酵母和其他真菌,魚(例如斑馬魚),植物,蒼蠅,甚至人等的哺乳動物細胞。

歷史

野生型GFP(wtGFP)

在1960年代和1970年代,綠色螢光蛋白,連同分開發光蛋白水母素,首先從維多利亞多管發光水母被純化,及其屬性被下村修研究。

GFP衍生物

由於對廣泛使用的潛力和研究人員不斷變化的需求,綠色螢光蛋白的許多不同的突變體已被改造設計。

結構

野生型綠色螢光蛋白,最開始是 238 個胺基酸的肽鏈,約 25KDa。然後按一定規則,11 條β-摺疊在外周圍成圓柱狀的柵欄;圓柱中,α-螺旋發色團固定在正幾乎中心處。發色圖被圍在中心,能避免偶極化的水分子、順磁化的氧分子或者順反異構作用與發色團,致使螢光猝滅。
螢光是螢光蛋白最特別的特點,而其中的發色團起著主要的作用。在 α-螺旋上的 65、66、67位胺基酸——絲氨酸酪氨酸甘氨酸經過環化、脫氫等作用後形成發色團。有意思的是,發色團形成過程是由外周柵欄上的殘基催化,底物只需要氧氣。這暗示綠色螢光蛋白被廣泛用於不同物種的潛力:在不同物種中能獨立表達成有功能的蛋白,而不需要額外的因子。不過,現在依然在討論準確的過程。
發色團上的共軛 π鍵能吸收激發光能量,在很短的時間後,以波長更長的發射光釋放能量,形成螢光。

套用

由於螢光蛋白能穩定在後代遺傳,並且能根據啟動子特異性地表達,在需要定量或其他實驗中慢慢取代了傳統的化學染料。更多地,螢光蛋白被改造成了不同的新工具,既提供了解決問題的新思路,也可能帶來更多有價值的新問題。

螢光顯微鏡

主條目:螢光顯微鏡
GFP和它的衍生物的可用性已經徹底重新定義螢光顯微鏡,以及它被用來在細胞生物學和其他生物學科的方式。其中,最令人興奮的就是用於超分辨顯微鏡成像。

參見

相關詞條

熱門詞條

聯絡我們