基本介紹
- 中文名:穩定流形
- 外文名:stable manifold
- 所屬學科:數學
- 所屬問題:動力系統(微分動力系統)
- 相關概念:穩定集,不穩定集等
基本介紹
穩定集與不穩定集


































穩定流形定理


































穩定流形(stable manifold)是微分動力系統的基本概念,它是微分動力系統研究的重要內容。穩定與不穩定流形是動力系統的不動點或周期軌附近當時間趨於無窮時會趨於該...
穩定集(stable set;stationary sets)有多個義項。一個是指多人合作對策的一種解集;另一個是指微分動力系統中與穩定流形相關的的穩定集;還指集合論中的一種...
中心流形定理(Center Manifold Theorem),控制理論中,考慮自治系統(時不變系統)dx/dt=f(x)。對其在平衡點(x*)線性化,則雅克比矩陣為 A=df/dt(x*)。中心流...
按一次近似決定穩定性(stability in the first approximation)是套用近似的線性...1和2表現的性質為典型的鞍點性質,它們給出了原點的局部穩定和不穩定流形[1] ...
3.5.1臨界轉速導致的穩定流形82 3.5.2氣動非線性造成的極限環運動86 參考文獻90 第4章有控旋轉彈的動態穩定性91 4.1彈體運動方程組的簡化91 4.2旋轉條件下執行...
在數學領域之微分幾何中,法叢(normal bundle)是一個特殊的向量叢,得自一個嵌入或浸入,是切叢的補。流形法叢是一種特殊的向量叢。...
第十六章雙曲集的穩定流形與不穩定流形1穩定集與不穩定集2穩定流形定理3穩定流形與不穩定流形的橫截相交第十七章公理A系統1公理A...
雙曲不動點(hyperbolic fixed point、hyperbolic equilibrium point)可微映射具有局部結構穩定性質的不動點。它的常見定義是在一般黎曼流形上給出。...
流形上的控制理論為非線性系統的研究提供了一條新的途徑,可用以研究非線性系統...第3章討論李雅普諾夫基本理論,給出各種穩定性的數學定義,並重點介紹李雅普諾夫...
那么存在一通有集羅CDiff <M>,使得對任意.f E } , .f的周期點是雙曲的,它們在非遊蕩集} <.f)中稠密,而且其穩定流形與不穩定流形是橫截相交的.這個...