相軌

相軌是泛函微分方程的重要概念。與常微分方程一樣,由抽象空間中的過程依次定義相軌及其極限集。

基本介紹

  • 中文名:相軌
  • 外文名:orbit
  • 適用範圍:數理科學
簡介,性質,極限集,

簡介

相軌是泛函微分方程的重要概念。與常微分方程一樣,由抽象空間中的過程依次定義相軌及其極限集。
設u是X上的一個過程,則對每一個(σ,x)∈R×X,稱集τ(σ,x)={(σ+t,U(σ,t)x)|t∈R+}為過(σ,x)∈R×X的軌道,稱集γ(σ,x)={U(σ,t)x|t∈R+}為過(σ,x)的相軌。

性質

若H⊂X,則
若{Tx|k=0,1,2,...}是一個離散動力系統,則過x∈X的相軌為γ(x)={Tx|k=0,1,2,...}。
若u是X上的ω周期過程,則軌道τ(σ+s,x)是軌道τ(σ,x)沿實數軸做長度為kω的平移,相軌γ(σ+kω,x)=γ(σ,x)對任意整數k成立。若u是X上的動力系統,則軌道τ(σ+s,x)是軌道τ(σ,x)沿實軸做長度為s的平移且對∀σ∈R,γ(σ,x)=γ(0,x)=γ(x)。

極限集

設u是X上的一個過程,則集合
分別稱為相軌Y(σ,x)的ω極限集和Y(α,x)的α極限集,其中Y(σ,x)={U(σ,t)x|t∈R+},Y(α,x)={U(σ,t)x|t∈R-}。
若Y(σ,x)是予緊的,則ω(σ,x)存在,非空,單連通而且是緊的,並且dist(U(σ,t)x,ω(σ,x))→0(t→+∞)。同理,若Y(σ,x)是予緊的,則α(σ,x)存在,非空,單連通而且是緊的,當t→-∞時dist(U(σ,t)x,α(σ,x))→0。

相關詞條

熱門詞條

聯絡我們