洛倫茨吸引子是洛倫茨振子(Lorenz oscillator)的長期行為對應的分形結構,以愛德華·諾頓·洛倫茨的姓氏命名。
基本介紹
- 中文名:洛倫茨吸引子
- 提出者:愛德華·諾頓·洛倫茨
- 提出時間:1963年
- 學科:數學
簡述
洛倫茨方程
![](/img/2/846/5a5da0a865aba0c6beb7f9451ccc.jpg)
![](/img/c/5e1/a69075d02c989e3612abdae888de.jpg)
![](/img/b/ca0/9e53d6d00245ee81941daf945819.jpg)
![](/img/f/7c9/ab38d0661698edb0a460aa9926e6.jpg)
![](/img/7/57b/87681cc7d330c6e41e5017db5a0e.jpg)
![](/img/1/722/f30176e43fbfbbfb9c440a2e07f6.jpg)
![](/img/d/4d3/6432e2f19832279499a0f7fb45f2.jpg)
瑞利數
不同ρ值時的洛倫茨吸引子 | |
---|---|
ρ=14, σ=10, β=8/3(放大) | ρ=13, σ=10, β=8/3(放大) |
ρ=15, σ=10, β=8/3(放大) | ρ=28, σ=10, β=8/3(放大) |
ρ值較小時,系統是穩定的,並能演變為兩個定點吸引子中的一個;當ρ大於24.74時,定點變成了排斥子,會以非常複雜的方式排斥軌跡,演變時自身從不交叉。 |
原始碼
GNU Octave
## Lorenz Attractor equations solved by ODE Solve## x' = sigma*(y-x)## y' = x*(rho - z) - y## z' = x*y - beta*zfunction dx = lorenzatt(X) rho = 28; sigma = 10; beta = 8/3; dx = zeros(3,1); dx(1) = sigma*(X(2) - X(1)); dx(2) = X(1)*(rho - X(3)) - X(2); dx(3) = X(1)*X(2) - beta*X(3); returnend## Using LSODE to solve the ODE system.clear allclose alllsode_options("absolute tolerance",1e-3)lsode_options("relative tolerance",1e-4)t = linspace(0,25,1e3); X0 = [0,1,1.05];[X,T,MSG]=lsode(@lorenzatt,X0,t);TMSGplot3(X(:,1),X(:,2),X(:,3))view(45,45)
Borland C
#include <graphics.h>#include <conio.h>void main(){ double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1; double dt = 0.0001; int a = 5, b = 15, c = 1; int gd=DETECT, gm; initgraph(&gd, &gm, "C:\\BORLANDC\\BGI"); do { x1 = x + a*(-x+y)*dt; y1 = y + (b*x-y-z*x)*dt; z1 = z + (-c*z+x*y)*dt; x = x1; y = y1; z = z1; putpixel((int)(19.3*(y - x*0.292893) + 320), (int)(-11*(z + x*0.292893) + 392), 9); } while (!kbhit()); closegraph();}
參見
- 混沌映射列表
- Takens定理
- 曼德布洛特集合