《機率論和隨機過程(第2版)》是以作者在Princeton大學和Maryland大學的講義為藍本擴充而成,書中的內容正好可作為《機率論和隨機過程》課程一學年的獨立教材。這對於高年級的本科生、研究生和想要了解本科目基礎知識的科研人員都是相當有用的。
基本介紹
- 書名:機率論和隨機過程
- 作者:凱羅勒夫 (Leonid B.Koralov)
- 出版日期:2012年6月1日
- 語種:簡體中文, 英語
- ISBN:9787510044106
- 外文名:Theory of Probability and Random Processes Second Edition
- 出版社:世界圖書出版公司北京公司
- 頁數:353頁
- 開本:24
- 品牌:世界圖書出版公司北京公司
內容簡介
圖書目錄
1RandomVariablesandTheirDistributions
1.1SpacesofElementaryOutcomes,a-Algebras,andMeasures
1.2ExpectationandVarianceofRandomVariablesonaDiscreteProbabilitySpace
1.3ProbabilityofaUnionofEvents
1.4EquivalentFormulationsofa-Additivity,Borela-AlgebrasandMeasurability
1.5DistributionFunctionsandDensities
1.6Problems
2SequencesofIndependentTrials
2.1LawofLargeNumbersandApplications
2.2deMoivre-LaplaceLimitTheoremandApplications
2.3PoissonLimitTheorem.
2.4Problems
3LebesgueIntegralandMathematicalExpectation
3.1DefinitionoftheLebesgueIntegral
3.2InducedMeasuresandDistributionFunctions
3.3TypesofMeasuresandDistributionFunctions
3.4RemarksontheConstructionoftheLebesgueMeasure
3.5ConvergenceofFunctions,TheirIntegrals,andtheFubiniTheorem
3.6SignedMeasuresandtheR,adon-NikodymTheorem
3.7LpSpaces
3.8MonteCarloMethod
3.9Problems
4ConditionalProbabilitiesandIndependence
4.1ConditionalProbabilities
4.2IndependenceofEvents,Algebras,andRandomVariables
4.3
4.4Problems
5MarkovChainswithaFiniteNumberofStates
5.1StochasticMatrices
5.2MarkovChains
5.3ErgodicandNon-ErgodicMarkovChains
5.4LawofLargeNumbersandtheEntropyofaMarkovChain
5.5ProductsofPositiveMatrices
5.6GeneralMarkovChainsandtheDoeblinCondition
5.7Problems
6RandomWalksontheLatticeZd
6.1RecurrentandTransientR,andomWalks
6.2RandomWalkonZandtheRefiectionPrinciple
6.3ArcsineLaw
6.4Gambler'sRuinProblem
6.5Problems
7LawsofLarzeNumbers
7.1Definitions,theBorel-CantelliLemmas,andtheKolmogorovInequality
7.2KolmogorovTheoremsontheStrongLawofLargeNumbers
7.3Problems
8WeakConveraenceofMeasures
8.1DefnitionofWeakConvergence
8.2WeakConvergenceandDistributionFunctions
8.3WeakCompactness,Tightness,andtheProkhorovTheorem
8.4Problems
9CharacteristicFunctions
9.1DefinitionandBasicProperties
9.2CharacteristicFunctionsandWeakConvergence
9.3GaussianRandomVectors
9.4Problems
10LimitTheorems
10.1CentralLimitTheorem,theLindebergCondition
10.2LocalLimitTheorem
10.3CentralLimitTheoremandRenormalizationGrOUDTheorv
10.4ProbabilitiesofLargeDeviations
……
PartⅡRandomProcesses
Index