概述,套用,性質,說明,證明,算法描述,Prim算法簡述,Kruskal算法簡述,偽代碼,C語言代碼,Kruskal算法 - pascal語言,Prim算法 - pascal語言,C++模板,
概述 在一給定的
無向圖 G = (V, E) 中,(u, v) 代表連線頂點 u 與頂點 v 的邊(即),而 w(u, v) 代表此
邊 的權重,若存在 T 為 E 的
子集 (即)且為無循環圖,使得
的 w(T) 最小,則此 T 為 G 的最小生成樹 。
最小生成樹其實是最小權重生成樹 的簡稱。
套用 生成樹和最小生成樹有許多重要的套用。
例如:要在n個城市之間鋪設光纜,主要目標是要使這 n 個城市的任意兩個之間都可以通信,但鋪設光纜的費用很高,且各個城市之間鋪設光纜的費用不同,因此另一個目標是要使鋪設光纜的總費用最低。這就需要找到帶權的最小生成樹。
性質 說明 最小生成樹性質:設G=(V,E)是一個連通網路,U是頂點集V的一個非空真子集。若(u,v)是G中一條“一個端點在U中(例如:u∈U),另一個端點不在U中的邊(例如:v∈V-U),且(u,v)具有最小權值,則一定存在G的一棵最小生成樹包括此邊(u,v)。
證明 為方便說明,先作以下約定:
①將集合U中的頂點看作是紅色頂點,②而V-U中的頂點看作是藍色頂點,③連線紅點和藍點的邊看作是紫色邊,④權最小的紫邊稱為輕邊(即權重最"輕"的邊)。於是,MST性質中所述的邊(u,v)就可簡稱為輕邊。
用反證法證明MST性質:
假設G中任何一棵MST都不含輕邊(u,v)。則若T為G的任意一棵MST,那么它不含此輕邊。
根據樹的定義,則T中必有一條從紅點u到藍點v的
路徑 P,且P上必有一條紫邊(u',v')連線紅點集和藍點集,否則u和v不連通。當把輕邊(u,v)加入樹T時,該輕邊和P必構成了一個迴路。刪去紫邊(u',v')後迴路亦消除,由此可得另一生成樹T'。
T'和T的差別僅在於T'用輕邊(u,v)取代了T中權重可能更大的紫邊(u',v')。因為w(u,v)≤w(u',v'),所以
w(T')=w(T)+w(u,v)-w(u',v')≤w(T)
即T'是一棵比T更優的MST,所以T不是G的MST,這與假設矛盾。
所以,MST性質成立。
算法描述 求MST的一般算法可描述為:針對圖G,從空樹T開始,往集合T中逐條選擇並加入n-1條安全邊(u,v),最終生成一棵含n-1條邊的MST。
當一條邊(u,v)加入T時,必須保證T∪{(u,v)}仍是MST的子集,我們將這樣的邊稱為T的安全邊。
Prim算法簡述 1).輸入:一個加權連通圖,其中頂點集合為V,邊集合為E;
2).初始化:Vnew = {x},其中x為集合V中的任一節點(起始點),Enew = {},為空;
3).重複下列操作,直到Vnew = V:
a.在集合E中選取權值最小的邊<u, v>,其中u為集合Vnew 中的元素,而v不在Vnew 集合當中,並且v∈V(如果存在有多條滿足前述條件即具有相同權值的邊,則可任意選取其中之一);
b.將v加入集合Vnew 中,將<u, v>邊加入集合Enew 中;
4).輸出:使用集合Vnew 和Enew 來描述所得到的最小生成樹。
Kruskal算法簡述 假設 WN=(V,{E}) 是一個含有 n 個頂點的連通網,則按照克魯斯卡爾算法構造
最小生成樹 的過程為:先構造一個只含 n 個頂點,而邊集為空的子圖,若將該子圖中各個頂點看成是各棵樹上的根結點,則它是一個含有 n 棵樹的一個森林。之後,從網的邊集 E 中選取一條權值最小的邊,若該條邊的兩個頂點分屬不同的樹,則將其加入子圖,也就是說,將這兩個頂點分別所在的兩棵樹合成一棵樹;反之,若該條邊的兩個頂點已落在同一棵樹上,則不可取,而應該取下一條權值最小的邊再試之。依次類推,直至森林中只有一棵樹,也即子圖中含有 n-1條邊為止。
偽代碼 GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始為空,是指頂點集和邊集均空
while T未形成G的生成樹 do{
找出T的一條安全邊(u,v);//即T∪{(u,v)}仍為MST的子集
T=T∪{(u,v)}; //加入安全邊,擴充T
}
return T; //T為生成樹且是G的一棵MST
}
注意:
下面給出的兩種求MST的算法均是對上述的一般算法的求精,兩算法的區別僅在於求安全邊的方法不同。
為簡單起見,下面用序號0,1,…,n-1來表示頂點集,即是:
V(G)={0,1,…,n-1},
G中邊上的權解釋為長度,並設T=(U,TE)。
C語言代碼 #include<stdio.h> #include<stdlib.h> #include<iostream.h> #defineMAX_VERTEX_NUM20 #defineOK1 #defineERROR0 #defineMAX1000 typedefstructArcell { doubleadj; }Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedefstruct { charvexs[MAX_VERTEX_NUM];//節點數組 AdjMatrixarcs;//鄰接矩陣 intvexnum,arcnum;//圖的當前節點數和弧數 }MGraph; typedefstructPnode//用於普利姆算法 { charadjvex;//節點 doublelowcost;//權值 }Pnode,Closedge[MAX_VERTEX_NUM];//記錄頂點集U到V-U的代價最小的邊的輔助數組定義 typedefstructKnode//用於克魯斯卡爾算法中存儲一條邊及其對應的2個節點 { charch1;//節點1 charch2;//節點2 doublevalue;//權值 }Knode,Dgevalue[MAX_VERTEX_NUM]; //------------------------------------------------------------------------------- intCreateUDG(MGraph&G,Dgevalue&dgevalue); intLocateVex(MGraphG,charch); intMinimum(MGraphG,Closedgeclosedge); voidMiniSpanTree_PRIM(MGraphG,charu); voidSortdge(Dgevalue&dgevalue,MGraphG); //------------------------------------------------------------------------------- intCreateUDG(MGraph&G,Dgevalue&dgevalue)//構造無向加權圖的鄰接矩陣 { inti,j,k; cout<<"請輸入圖中節點個數和邊/弧的條數:"; cin>>G.vexnum>>G.arcnum; cout<<"請輸入節點:"; for(i=0;i<G.vexnum;++i) cin>>G.vexs[i]; for(i=0;i<G.vexnum;++i)//初始化數組 { for(j=0;j<G.vexnum;++j) { G.arcs[i][j].adj=MAX; } } cout<<"請輸入一條邊依附的定點及邊的權值:"<<endl; for(k=0;k<G.arcnum;++k) { cin>>dgevalue[k].ch1>>dgevalue[k].ch2>>dgevalue[k].value; i=LocateVex(G,dgevalue[k].ch1); j=LocateVex(G,dgevalue[k].ch2); G.arcs[i][j].adj=dgevalue[k].value; G.arcs[j][i].adj=G.arcs[i][j].adj; } returnOK; } intLocateVex(MGraphG,charch)//確定節點ch在圖G.vexs中的位置 { inta; for(inti=0;i<G.vexnum;i++) { if(G.vexs[i]==ch) a=i; } returna; } voidMiniSpanTree_PRIM(MGraphG,charu)//普利姆算法求最小生成樹 { inti,j,k; Closedgeclosedge; k=LocateVex(G,u); for(j=0;j<G.vexnum;j++) { if(j!=k) { closedge[j].adjvex=u; closedge[j].lowcost=G.arcs[k][j].adj; } } closedge[k].lowcost=0; for(i=1;i<G.vexnum;i++) { k=Minimum(G,closedge); cout<<"("<<closedge[k].adjvex<<","<<G.vexs[k]<<","<<closedge[k].lowcost<<")"<<endl; closedge[k].lowcost=0; for(j=0;j<G.vexnum;++j) { if(G.arcs[k][j].adj<closedge[j].lowcost) { closedge[j].adjvex=G.vexs[k]; closedge[j].lowcost=G.arcs[k][j].adj; } } } } intMinimum(MGraphG,Closedgeclosedge)//求closedge中權值最小的邊,並返回其頂點在vexs中的位置 { inti,j; doublek=1000; for(i=0;i<G.vexnum;i++) { if(closedge[i].lowcost!=0&&closedge[i].lowcost<k) { k=closedge[i].lowcost; j=i; } } returnj; } voidMiniSpanTree_KRSL(MGraphG,Dgevalue&dgevalue)//克魯斯卡爾算法求最小生成樹 { intp1,p2,i,j; intbj[MAX_VERTEX_NUM];//標記數組 for(i=0;i<G.vexnum;i++)//標記數組初始化 bj[i]=i; Sortdge(dgevalue,G);//將所有權值按從小到大排序 for(i=0;i<G.arcnum;i++) { p1=bj[LocateVex(G,dgevalue[i].ch1)]; p2=bj[LocateVex(G,dgevalue[i].ch2)]; if(p1!=p2) { cout<<"("<<dgevalue[i].ch1<<","<<dgevalue[i].ch2<<","<<dgevalue[i].value<<")"<<endl; for(j=0;j<G.vexnum;j++) { if(bj[j]==p2) bj[j]=p1; } } } } voidSortdge(Dgevalue&dgevalue,MGraphG)//對dgevalue中各元素按權值按從小到大排序 { inti,j; doubletemp; charch1,ch2; for(i=0;i<G.arcnum;i++) { for(j=i;j<G.arcnum;j++) { if(dgevalue[i].value>dgevalue[j].value) { temp=dgevalue[i].value; dgevalue[i].value=dgevalue[j].value; dgevalue[j].value=temp; ch1=dgevalue[i].ch1; dgevalue[i].ch1=dgevalue[j].ch1; dgevalue[j].ch1=ch1; ch2=dgevalue[i].ch2; dgevalue[i].ch2=dgevalue[j].ch2; dgevalue[j].ch2=ch2; } } } } intmain() { inti,j; MGraphG; charu; Dgevaluedgevalue; CreateUDG(G,dgevalue); cout<<"圖的鄰接矩陣為:"<<endl; for(i=0;i<G.vexnum;i++) { for(j=0;j<G.vexnum;j++) cout<<G.arcs[i][j].adj<<""; cout<<endl; } cout<<"=============普利姆算法===============\n"; cout<<"請輸入起始點:"; cin>>u; cout<<"構成最小代價生成樹的邊集為:\n"; MiniSpanTree_PRIM(G,u); cout<<"============克魯斯科爾算法=============\n"; cout<<"構成最小代價生成樹的邊集為:\n"; MiniSpanTree_KRSL(G,dgevalue);return0; }
Kruskal算法 - pascal語言 program didi;
var
a:array[0..100000] of record
s,t,len:longint;
end;
fa,r:array[0..10000] of longint;
n,i,j,x,y,z:longint;
tot,ans:longint;
count,xx:longint;
procedure quick(l,r:longint);
var
i,j,x,y,t:longint;
begin
i:=l; j:=r;
x:=a[(l+r) div 2].len;
repeat
while x>a[i].len do inc(i);
while x<a[j].len do dec(j);
if i<=j then
begin
y:=a[i]; a[i]:=a[j]; a[j]:=y;
inc(i);dec(j);
end;
until i>j;
if i<r then quick(i,r);
if l<j then quick(l,j);
end;
function find(x:longint):longint;
begin
if fa[x]=x then exit(x);
fa[x]:=find(fa[x]);{路徑壓縮}
exit(fa[x]);
end;
procedure union(x,y:longint);{啟發式合併}
var
t:longint;
begin
x:=find(x);
y:=find(y);
if r[x]>r[y] then
begin
t:=x; x:=y; y:=t;
end;
if r[x]=r[y] then inc(r[x]);
fa[x]:=y;
end;
begin
readln(xx,n);
for i:=1 to xx do fa[i]:=i;
for i:=1 to n do
begin
read(x,y,z);
inc(tot);
a[tot].s:=x;
a[tot].t:=y;
a[tot].len:=z;
end;
quick(1,tot);{將邊排序}
ans:=0;
count:=0;
i:=0;
while count<=x-1 do{count記錄加邊的總數}
begin
inc(i);
with a[i] do
if find(s)<>find(t) then
begin
union(s,t);
ans:=ans+len;
inc(count);
end;
end;
write(ans);
end.
Prim算法 - pascal語言 var
m,n:set of 1..100;
s,t,min,x,y,i,j,k,l,sum,p,ii:longint;
a:array[1..100,1..100]of longint;
begin
readln(p);
for ii:=1 to p do
begin
k:=0; sum:=0;
fillchar(a,sizeof(a),255);
readln(x);
m:=[1];
n:=[2..x];
for i:=1 to x do
begin
for j:=1 to x do
begin
read(a[i,j]);
if a[i,j]=0
then a[i,j]:=maxlongint;
end;
readln;
end;
for l:=1 to x-1 do
begin
min:=maxlongint;
for i:=1 to x do
if i in m
then begin
for j:=1 to x do
begin
if (a[i,j]<min)and(j in n)
then begin
min:=a[i,j];
s:=i;
t:=j;
end;
end;
end;
sum:=sum+min;
m:=m+[t];
n:=n-[t];
inc(k);
end;
writeln(sum);
end;
end.
C++模板 //maxe保存了最大邊數structedge{intu,v,w;booloperator<(constedge&b)const{returnthis->w>b.w;}}e[maxe];//並查集相關intf[maxn];inlinevoidinit(){for(inti=0;i<maxn;i++)f[i]=i;}intfind(intx){if(f[x]==x)returnx;elsereturnf[x]=find(f[x]);}//主算法intkruskal(intn,intm){//n:點數,m:邊數//所有邊已經預先儲存在e數組裡sort(e,e+m);init();intans=0;for(inti=0;i<m;i++){intu=e[i].u,v=e[i].v,w=e[i].w;if(find(u)==find(v))continue;f[find(u)]=find(v);ans+=w;}returnans;}