圖書信息
出版社: 世界圖書出版公司;
外文書名: Modular Functions and Dirichlet Series in Number Theory (2nd Edition)
:
正文語種: 英語
開本: 24
ISBN: 7510004403, 9787510004407
條形碼: 9787510004407
尺寸: 22 x 14.8 x 1.2 cm
重量: 299 g
作者簡介
作者:(美國) 阿波斯托爾 (Apostol.T.M.)
內容簡介
《數論中的模函式和狄利克萊級數(第2版)》講述了:This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology during the last 25 years.The second volume presupposes a background in number theory com-parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis
目錄
Chapter1 Ellipticfunctions
1.1 Introduction
1.2 Doublyperiodicfunctions
1.3 Fundamentalpairsofperiods
1.4 Ellipticfunctions
1.5 Constructionofellipticfunctions
1.6 TheWeierstrassfunction
1.7 TheLaurentexpansionofganeartheorigin
1.8 Differentialequationsatisfiedbyξ
1.9 TheEisensteinseriesandtheinvariantsg2andg3
1.10 Thenumberse1,e2,e3
1.11 ThediscriminantA
1.12 Klein'smodularfunctionJ(τ)
1.13 InvarianceofJunderunimodulartransformations
1.14 TheFourierexpansionsofg2(τ)andg3(τ)
1.15 TheFourierexpansionsof△(τ)andJ(τ)
ExercisesforChapter1
Chapter2 TheModulargroupandmodularfunctions
2.1 M6biustransformations
2.2 Themodulargroup
2.3 Fundamentalregions
2.4 Modularfunctions
2.5 Specialvaluesof
2.6 Modularfunctionsasrationalfunctionsof
2.7 Mappingpropertiesof
2.8 ApplicationtotheinversionproblemforEisensteinseries
2.9 ApplicationtoPicard'stheorem
ExercisesforChapter2
Chapter3 TheDedekindetafunction
3.1 Introduction
3.2 Siegei'sproofofTheorem3.1
3.3 Infiniteproductrepresentationfor△(τ)
3.4 Thegeneralfunctionalequationforη(τ)
3.5 Iseki'stransformationformula
3.6 DeductionofDedekind'sfunctionalequationfromIseki'sformula
3.7 PropertiesofDedekindsums
3.8 ThereciprocitylawforDedekindsums
3.9 CongruencepropertiesofDedekindsums
3.1 0TheEisensteinseriesG2(τ)
ExercisesforChapter3
Chapter4 Congruencesforthecoefficientsofthemodularfunctionj
4.1 Introduction
4.2 ThesubgroupFo(q)
4.3 FundamentalregionofFo(p)
4.4 FunctionsautomorphicunderthesubgroupFo(p)
4.5 ConstructionoffunctionsbelongingtoFo(p)
4.6 Thebehavioroffpunderthegeneratorsofг
4.7 Thefunction(τ)=△(qτ)/△(τ)
4.8 Theunivalentfunctionφ(τ)
4.9 Invarianceofφ(τ)undertransformationsofг0(q)
4.1 0Thefunctionjpexpressedasapolynomialinφ
ExercisesforChapter4
Chapter5 Rademacher'sseriesforthepartitionfunction
5.1 Introduction
5.2 Theplanoftheproof
5.3 Dedekind'sfunctionalequationexpressedintermsofF
5.4 Fareyfractions
5.5 Fordcircles
5.6 Rademacher'spathofintegration
5.7 Rademacher'sconvergentseriesforp(n)
ExercisesforChapter5
Chapter6 Modularformswithmultiplicativecoefficients
6.1 Introduction
6.2 Modularformsofweightk
6.3 Theweightformulaforzerosofanentiremodularform
6.4 RepresentationofentireformsintermsofG4andG6
6.5 ThelinearspaceMkandthesubspaceMk.o
6.6 Classificationofentireformsintermsoftheirzeros
6.7 TheHeckeoperatorsTn
6.8 Transformationsofordern
6.9 BehaviorofTnfunderthemodulargroup
6.10 MultiplicativepropertyofHeckeoperators
6.11 EigenfunctionsofHeckeoperators
6.12 Propertiesofsimultaneouseigenforms
6.13 Examplesofnormalizedsimultaneouseigenforms
6.14 RemarksonexistenceofsimultaneouseigenformsinM2k.0
6.15 EstimatesfortheFouriercoefficientsofentireforms
6.16 ModularformsandDirichletseries
Exerci