簡史
20世紀初,隨著天然放射性的發現,就開始探索將天然放射性核素用於分析化學中,以簡化操作、提高分析的靈敏度。1912年G.赫維西等人首次用放射性鉛(210Pb)作指示劑測定鉻酸鉛的溶解度。1925年R.埃倫伯格以放射性鉛(212Pb)作指示劑用沉澱法分析天然鉛。1932年赫維西等人為了測定
花崗岩中的微量鉛,在分析樣品之前,向樣品溶液中加入已知比活度的放射性鉛,用
同位素稀釋法進行鉛的分析,得到滿意的結果。所有這些都為放射性指示劑在
分析化學中的套用提供了條件。隨後在萃取、沉澱、吸附、滴定、蒸發等分析操作中也得到廣泛的套用。1934年F.約里奧-居里和I.約里奧-居里發現人工放射性,E.費密等人又提出在熱中子作用下幾乎所有元素都能感生放射性。1936年赫維西和H.萊維首次利用(n,γ)核反應,成功地分析了氧化釔中的鏑和氧化釓中的銪等雜質,開闢了活化分析的新領域。隨後,1938年G.T.西博格等人第一次進行了帶電粒子活化分析。隨著反應堆和各種加速器的建立,多道譜儀的不斷改進和微處理機的推廣運用,活化分析得到飛躍的發展。50年代開始又逐步發展和完善了利用核現象的微量分析技術(即
核分析技術)。其中有通過正電子與物質相互作用來研究物質微觀結構的
正電子湮沒技術、原子核無反衝的γ射線共振吸收──穆斯堡爾效應──的套用,還有離子束背散射分析、核反應分析、溝道效應的套用和70年代發展起來的粒子激發 X射線螢光分析等。放射分析化學由於具有靈敏度高、取樣量小、可以不破壞樣品等優點而受到重視並得到迅速發展。
方法
放射分析化學中常用的方法分為兩類:①放射性同位素作指示劑的方法,如放射分析法、放射化學分析、同位素稀釋法等;②選擇適當種類和能量的入射粒子轟擊樣品,探測樣品中放出的各種特徵輻射的性質和強度的方法,如活化分析、粒子激發 X射線螢光分析、穆斯堡爾譜、
核磁共振譜、正電子湮沒和
同步輻射等。
放射分析法
用放射性核素、
放射性標記化合物作指示劑,通過測定其放射性來確定待測非放射性樣品含量的分析方法。用在容量分析中的放射分析法叫做
放射性滴定。
放射化學分析
利用適當的方法分離、純化樣品後,通過測定放射性來確定樣品中所含放射性物質數量的技術。如通過測定天然放射性核素鉀40(半衰期為1.28×109年,豐度為0.111%)的放射性而求鉀含量的方法。 同位素稀釋法 將已知比活度的、與待測物質相同的放射性同位素或標記化合物,與樣品混合均勻,分離純化其中一部分,測定其比活度。根據混合前後比活度的改變,即同位素稀釋倍數來計算待測物的含量。(見
同位素稀釋法、
亞化學計量分析)
活化分析
利用核反應使待測樣品中的穩定核素轉變為放射性核素後,由
核反應截面、粒子
注量率、射線能量、半衰期和放射性活度來確定待測物的含量。可分為
中子活化分析、
帶電粒子活化分析和光子活化分析。活化分析作為高靈敏度核分析技術,在生物樣品分析和高純材料中微量材料的分析,以及在環境科學、考古學和法醫學等領域廣泛套用。分析靈敏度為 10-8~10-11克。 激發X射線螢光分析法 當α 、β、γ或X射線作用於樣品時,由於庫侖散射,軌道電子吸收其部分動能,使原子處於激髮狀態。由激發態返回基態時發射特徵 X射線,根據此特徵X射線的能量和強度來分析元素的種類和含量。其靈敏度很高,用途很廣。(見X射線螢光光譜分析法)
µ子X射線螢光分析
當具有一定能量的帶負電荷的µ子(µ-)射入待測樣品時,由於受原子核庫侖引力的作用而被捕獲形成µ子原子,也釋放出一系列特徵X射線即µ-X射線,由此可以分析樣品的化學組分和狀態。(見µ子X射線分析)
穆斯堡爾共振譜
即無反衝條件下的核γ射線共振譜。由於分辨能力非常高,對核外電子狀態的微小變化也能測定,因此可以得到化學位移、分子內的結合狀態及分子間相互作用等核外電子的信息。已用於鐵、錫、銪、銩、鉭等的物理、化學狀態的分析中。(見
穆斯堡爾譜學)
正電子湮沒法
正電子是電子的反粒子。此法利用正電子的湮沒壽命來研究物質的微觀結構,如金屬缺陷和各種材料的相變,以及研究溶液中的自由電子和溶劑化電子等。
核磁共振法
通過核磁共振光譜特性如化學遷移、耦合常數、多重性、吸收峰的寬度和強度以及溫度效應,來測定樣品的分子結構,特別是有機化合物的分子結構。
特點
放射分析化學與一般分析化學比較,有下列特點:基於測量放射性或特徵輻射,分析靈敏度高(一般能達1ppm),準確度高,分析速度快,方法簡便可靠,取樣量小,有時還可以不破壞樣品結構等。
各種分析方法都具有其特點和最適分析範圍。同位素稀釋法要有已知比活度的
放射性標準,亞化學計量法就無此需要;中子活化分析一般對中重元素和部分輕元素分析較為適宜,能分析厚樣品;帶電粒子活化分析和背散射分析主要用於表面分析,其中帶電粒子活化分析對輕元素分析特別適宜,背散射分析則對中重元素較靈敏,X射線螢光分析具有較好的解析度和探測靈敏度。通常根據樣品的條件和分析要求,選用合適的分析方法。沒有一種分析方法是全面合適的,有時需要選用幾種方法組合才能得到滿意的效果。