擬正規運算元(quasi-normal operator)是正規運算元的推廣。正規運算元和等距運算元都是擬正規的。 基本介紹 中文名:擬正規運算元外文名:quasi-normal operator適用範圍:數理科學 簡介,性質,正規運算元, 簡介擬正規運算元是正規運算元的推廣。設H是復希爾伯特空間,A是H上的有界線性運算元,如果A與A*A可交換,就稱A是擬正規的(或擬正常的)。性質正規運算元和等距運算元都是擬正規的。設A的極分解為則A為擬正規運算元的充分必要條件是正規運算元正規運算元是酉運算元和自共軛運算元的推廣。希爾伯特空間H上的有界線性運算元N如果滿足N*N=NN*,則N稱為正規運算元(或正常運算元)。正規運算元的譜分解定理是由馮∙諾伊曼於20世紀60年代給出的,它實際上是n維複線性空間上的正規矩陣對角化理論的推廣,也刻畫了正規運算元的結構,由此可以導出正規運算元的許多重要性質。