人物經歷
碩士:2007-2009年 清華大學材料科學與工程系 ;
博士後:2013-2015年
清華大學物理系清華-富士康納米科技研究中心;
研究方向
學術簡介
主持中央高校基本科研業務費優秀教師項目優秀導師項目等。主要研究領域為新型納米
能源材料在鋰離子電池和超級電容器上的套用和功能材料晶體結構設計等。以第一作者或通訊作者在ACS Nano、Small、Journal of Materials Chemistry A、Nano Letters、Chemical Engineering Journal、Journal of Power Sources、Nano Research、Applied Surface Science、Journal of Materials Science & Technology、Chemical Communication、Journal of Alloys and Compounds、Dalton Transactions、Nano Energy、Nano-micro letters等國際知名學術期刊發表論文40餘篇。已有多篇文章入選Web of knowledge 資料庫高被引論文。應邀為多個學術期刊審稿。已獲得多項中國專利,1項美國專利。現主持參與多項鋰離子電池、鋰硫電池電極材料的可控制備、電化學性能調控及套用相關的項目。
截止2020年9月
獲獎記錄
2019年度中國地質大學(北京)研究生指導名師。
學術論文
[46] Shi Y., Sun L.*., Zhang Y., Si H., Sun C., Gu J., Yi Gong., Li, X., Zhang Y., SnS2 nanodots decorated on RGO sheets with enhanced pseudocapacitive performance for asymmetric supercapacitors, J. Alloys Compd. 2021, 853, 156903
[45] Zhang Y., Sun L.*, Zhao X., Wu L., Wang K. , Si H., Gu J. , Sun C., Shi Y. and Zhang Y. , Construction of Sn-P-Graphene microstructure with Sn-C and P-C co-bonding as anodes for Lithium-ion ,Chem. Commun., 2020,56, 10572-10575
[44] Sun, L.*; Zhang, Y.; Gong, Y.; Si, H.; Shi, Y.; Fan, K.; Sun, C.; Zhang, Y.Sn-Decorated Red P Entangled in CNTs as Anode for Advanced Lithium IonBatteries. Dalton Trans., 2020,49, 10909-10917
[43] Zhang,Y.; Sun, L.*; Li, Y.; Shi, Y.; Gu, J.; Zhang, L.; Li, X.; Si, H.; Sun, C.;Zhang, Y. CTAB-Modified Ni2P@ACNT Composite with Enhanced Supercapacitive and Lithium / Sodium Storage Performance. J. Electroanal. Chem. 2020, 873, 114441.
[42] Sun, L.*; Zhang, Y.; Si, H.; Shi, Y.;Sun, C.; Zhang, Y. Porous Mo-C Coverage on ZnO Rods for EnhancedSupercapacitive Performance. Dalt. Trans. 2020, 49 (16),5134–5142.
[41] Wu,L.; Sun, L.*; Li, X.; Zhang, Q.; Zhang, Y.; Gu, J.; Wang, K.; Zhang, Y. CuCo2S4–RGO Microflowers: First-Principle Calculation and Application in Energy Storage. Small, 2020, 16 (28), 1–12.
[40] Sun,C.; Sun, L.*; Zhang, Y.; Si, H.; Fan, K.; Shi, Y.; Gu, J.; Zhang, Y. ReducedGraphene Oxide-Modified NiCo-Phosphates on Ni Foam Enabling High ArealCapacitances for Asymmetric Supercapacitors. J. Mater. Sci. Technol. 2020,3.
[39] Si, H.; Sun, L.*; Zhang, Y.; Wu, L.;Zhang, Y.; Zhang, Y. Enhanced Pseudocapacitive Energy Storage Properties ofBudding-Branch like MoO2@ C/CNT Nanorods. Dalt. Trans. Dalton Trans., 2020,49, 1637-1645
[38] Zhang,Y.; Sun, L*.; Zhang, L.; Li, X.; Gu, J.; Si, H.; Wu, L.; Shi, Y.; Sun, C.;Zhang, Y. Highly Porous Oxygen-Doped NiCoP Immobilized in Reduced GrapheneOxide for Supercapacitive Energy Storage. Compos. Part B Eng. 2020,182 , 107611.
[37] Wu,L.; Sun, L*.; Li, X.; Zhang, Q.; Si, H.; Zhang, Y.; Wang, K.; Zhang, Y.Mesoporous ZnCo2O4-CNT Microflowers as Bifunctional Material forSupercapacitive and Lithium Energy Storage. Appl. Surf. Sci. 2020,506, 144964.
[36] Gu J , Sun L* , Zhang Y , et al. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chemical Engineering Journal, 385.123454
[35] Gong,Y.; Sun, L*.; Si, H.; Zhang, Y.; Shi, Y.; Wu, L.; Gu, J.; Zhang, Y. MnO NanorodsCoated by Co-Decorated N-Doped Carbon as Anodes for High Performance LithiumIon Batteries. Appl. Surf. Sci. 2020, 504,144479
[34] Zhang, Y.; Zhang, Y.; Zhang, Y.; Si,H.; Sun, L*. Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads asAdvanced Electrodes for Asymmetric Supercapacitors. Nano-Micro Lett. 2019,11 (1), 1–15
[33] Sun, L.*, Si, H., Zhang, Y., Shi, Y., Wang, K., Liu, J., Zhang, Y. *, Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries, J.Power Sources. 415 (2019) 126–135.
[32] Zhang, Y., Sun, L.*, Bai, L., Si, H., Zhang, Y., Zhang, Y. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior, Nano Res. 12 (2019).12,607-618
[31] Wang, D.; Wang, K.; Wu, H.; Luo, Y.; Sun, L.; Zhao, Y.; Wang, J.*; Jia, L.; Jiang, K.; Li, Q.; Fan, S.; Wang, J. CO2oxidation of Carbon Nanotubes for Lithium-Sulfur Batteries with Improved Electrochemical Performance. Carbon, 2018, 132, 370–379.
[30] Bai, L.; Zhang, Y. *; Zhang, L.; Zhang, Y.; Sun, L.*; Ji, N.; Li, X.; Si, H.; Zhang, Y.; Huang, H.* Jahn-Teller Distortions in Molybdenum Oxides: An Achievement in Exploring High Rate Supercapacitor Applications and Robust Photocatalytic Potential. Nano Energy, 2018, 53, 982–992.
[29] Wang, D.; Wang, K.; Sun, L.; Wu, H.; Wang, J.; Zhao, Y.; Yan, L.; Luo, Y.; Jiang, K.; Li, Q.; Fan, S.; Li, J.; Wang, J.* MnO2 nanoparticles Anchored on Carbon Nanotubes with Hybrid Supercapacitor-Battery Behavior for Ultrafast Lithium Storage. Carbon N. Y., 2018, 139, 145–155.
[28] Sun, L.*; Zhang, Y.; Zhang, Y.; Si, H.; Qin, W.; Zhang, Y. * Reduced Graphene Oxide Nanosheet Modified NiMn-LDH Nanoflake Arrays for High-Performance Supercapacitors. Chem. Commun., 2018, 54, 10172–10175.
[27] Sun,L.; Zhang, Y.; Si, H.; Zhang, Y.; Liu, J.; Liu, J.; Zhang, Y. TiO2-Modified RedPhosphorus Nanosheets Entangled in Carbon Nanotubes for High PerformanceLithium Ion Batteries. Electrochim. Acta 2019, 297, 319–327.
[26] Si,H.; Sun, L.; Zhang, Y.; Zhang, Y.; Bai, L.; Zhang, Y. Carbon-Coated MoO 2Nanoclusters Anchored on RGO Sheets as High-Performance Electrodes forSymmetric Supercapacitors. Dalt. Trans. 2019, 48 (1), 285–295.
[25] Zhang, D.; Zhang, Y. *; Luo, Y.; Zhang, Y.; Li, X.; Yu, X.; Ding, H.; Chu, P.K.; Sun, L.* High-Performance Asymmetrical Supercapacitor Composed of RGO-Enveloped Nickel Phosphite Hollow Spheres and N/S Co-Doped RGO Aerogel. Nano Res., 2018, 11, 1651–1663.
[24] Lv, K.; Zhang, Y. *; Zhang, D.; Ren, W.; Sun, L. * Mn3O4 nanoparticles Embedded in 3D Reduced Graphene Oxide Network as Anode for High-Performance Lithium Ion Batteries. J. Mater. Sci. Mater. Electron., 2017, 28, 14919–14927.
[23] Zhang, Y.; Zhang, Y.*; Zhang, D.; Sun, L.* Urchin-like NiCo2O4nanoneedles Grown on Mesocarbon Microbeads with Synergistic Electrochemical Properties as Electrodes for Symmetric Supercapacitors. Dalt. Trans., 2017, 46, 9457–9465.
[22] Sun, L. *; Zhang, Y.; Zhang, D.; Zhang, Y.* Amorphous Red Phosphorus Nanosheets Anchored on Carbon Nanotubes as High Performance Anodes for Lithium Ion Batteries. Nano Res., 2017, 1–13.
[21] Sun, L. *; Zhang, Y.; Zhang, D.; Zhang, Y. * Amorphous Red Phosphorus Nanosheets Anchored on Graphene Layers as High Performance Anodes for Lithium Ion Batteries. Nanoscale, 2017, 9, 18552–18560.
[20]Sun, L.; Wang, D. T.; Luo, Y. F.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H.; Wang, J. P. *; Fan, S. S. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Acs Nano 2016, 10, (1), 1300-1308.
[19]Sun, L.; Kong, W. B.; Wu, H. C.; Wu, Y.; Wang, D. T.; Zhao, F.; Jiang, K. L.; Li, Q. Q.; Wang, J. P. *; Fan, S. S. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale 2016, 8, (1), 617-625.
[18]Sun, L.; Kong, W. B.; Li, M. Y.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H.; Wang, J. P. *; Fan, S. S. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. Nanotechnology 2016, 27, (7).
[17]Kong, W. B.; Sun, L.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Wang, J. P. *; Fan, S. S. Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries. Carbon 2016, 96, 1053-1059.
[16]Yu, Y.; Luo, S.; Sun, L.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Wang, J. P. *; Fan, S. S. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 2015, 7, (22), 10178-10185.
[15]Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P. *; Fan, S. S. Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J Mater Chem A 2015, 3, (10), 5305-5312.
[14]Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z.; Chan, H. L. W.; Wang, Y. * Graphene/Sulfur Hybrid Nanosheets from a Space-Confined "Sauna" Reaction for High-Performance Lithium-Sulfur Batteries. Adv Mater 2015, 27, (39), 5936-5942.
[13]Fei, L. F.; Hu, Y. M.; Li, X.; Song, R. B.; Sun, L.; Huang, H. T.; Gu, H. S.; Chan, H. L. W.; Wang, Y. * Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. Acs Appl Mater Inter 2015, 7, (6), 3665-3670.
[12]Sun, L.; Wang, J. P. *; Jiang, K. L.; Fan, S. S. Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. J. Power Sources 2014, 248, 265-272.
[11]Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P. *; Fan, S. S. Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Nano Lett 2014, 14, (7), 4044-4049.
[10]Fei, L. F.; Sun, L.; Lu, W.; Guo, M.; Huang, H. T.; Wang, J. P.; Chan, H. L. W.; Fan, S. S.; Wang, Y. * Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li3V2(PO4)(3) nanospheres. Nanoscale 2014, 6, (21), 12426-12433.
[9]Fei, L. F.; Lu, W.; Sun, L.; Wang, J. P.; Wei, J. B.; Chan, H. L. W.; Wang, Y. * Highly entangled carbon nanoflakes on Li3V2( PO4)(3) microrods for improved lithium storage performance. Rsc Adv 2013, 3, (5), 1297-1301.
[8]Qi, J. Q. *; Sun, L.; Wang, Y.; Chen, W. P.; Du, P.; Xu, Y. G.; Li, L. T.; Nan, C. W.; Chan, H. L. W. Low-temperature synthesis and analysis of barium titanate nanoparticles with excess barium. Adv Powder Technol 2011, 22, (3), 401-404.
[7]Qi, J. Q. *; Sun, L.; Qi, X. W.; Wang, Y.; Chan, H. L. W. Grain size modulation on BaTiO3 nanoparticles synthesized at room temperature. J Solid State Chem 2011, 184, (10), 2690-2694.
[6]Qi, J. Q. *; Peng, T.; Hu, Y. M.; Sun, L.; Wang, Y.; Chen, W. P.; Li, L. T.; Nan, C. W.; Chan, H. L. W. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature. Nanoscale Res Lett 2011, 6.
[5]Qi, J. Q. *; Sun, L.; Wang, Y.; Chen, W. P.; Du, P.; Xu, Y. G.; Li, L. T.; Nan, C. W.; Chan, H. L. W. Excess titanium in barium titanate nanoparticles directly synthesized from solution. J Phys Chem Solids 2010, 71, (12), 1676-1679.
[4]Qi, J. Q. *; Sun, L.; Du, P.; Li, L. T. Slurry Synthesis of Bismuth Sodium Titanate with a Transient Aurivillius-Type Structure. J Am Ceram Soc 2010, 93, (4), 1044-1048.
[3]Qi, J. Q. *; Sun, L.; Du, P.; Chen, W. P.; Xu, Y. G.; Li, L. T. Stoichiometry of BaTiO3 nanoparticles. J Nanopart Res 2010, 12, (7), 2605-2609.
[2]Sun, L.; Qi, J. Q. *; Wu, Y.; Du, P.; Li, L. T. Synthesis and Characterization of TiO2 Nano Powders by Pyrogenation-with-Sugar-Protection Method. Rare Metal Mat Eng 2009, 38, 983-986.
[1]Du, P.; Qi, J. Q. *; Sun, L.; Li, L. T. Effect of Particles Synthesized by Different Methods on Structure and Properties of Na0.5Bi0.5TiO3 Ceramics. Rare Metal Mat Eng 2009, 38, 322-325