典型多模式光學成像
典型的多模式光學成像模式包括光學/CT雙模式成像、光學/PET雙模式成像和光學/MRI雙模式成像等。
1.光學/CT雙模式成像
光學成像的優勢在於具有很高的靈敏度,但是成像解析度不高,另外不具有對結構信息成像的功能,而CT作為典型的結構成像模式恰好彌補了光學成像的不足。光學/CT雙模式成像能夠同時對功能和結構同時進行成像,並且在成像過程中,CT成像獲得的結構信息能夠為光學成像提供先驗信息,對光學成像結果進行最佳化。光學/CT雙模式成像已經被套用於骨骼生長和重塑機理研究、脖頸癌[1]、肺癌[
2]、阿爾茲海默症[
3]機理研究及藥物開發等諸多方向。
2.光學/MRI雙模式成像
光學/MRI雙模式系統能夠實現參數上的互補。高解析度的MRI圖像作為先驗信息被引入到光學成像的重建中,對光學成像的量化精度以及空間解析度均有明顯的提升。所以將光學/MRI雙模式系統具有能夠加深對腫瘤的複雜生物過程的潛力。光學/MRI雙模式成像已被套用於腫瘤診斷[4]、腫瘤治療療效評價[
5]、疾病機理研究[5-7]。
3.光學/PET雙模式成像
PET和光學成像都是功能成像,能夠同時獲取分子活動或者記錄時間分辨的目標,這一點是使用兩套獨立的系統所達不到的,另外,這兩種成像方式面對不同的靶物,因而往往能夠提供更全面、精確的腫瘤診斷、監測和療效信息。
代表性研究單位
國際上在光學/CT雙模式成像領域中具有代表性的研究單位有:德國慕尼黑亥姆霍茲中心[1],佛羅里達大學[8]、華中科技大學[
9]、清華大學[
10]、中科院自動化所[
11]。在光學/MRI雙模式成像領域中具有代表性的研究單位有:美國達特茅斯學院,蘇黎世聯邦理工學院等。而在光學/PET成像領域中有代表性的研究單位是加利福利亞大學。他們都對光學多模式成像都起到了積極的推動作用。
1. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, "FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography," Nat Methods 9, 615-U140 (2012).
2. J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc Natl Acad Sci U S A 102, 14404-14409 (2005).
3. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, "Hybrid FMT-CT imaging of amyloid-[beta] plaques in a murine Alzheimer's disease model," NeuroImage 44, 1304-1311 (2009).
4. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," P Natl Acad Sci USA 97, 2767-2772 (2000).
5. C. M. McCann, P. Waterman, J.-L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, "Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy," NeuroImage 45, 360-369 (2009).
6. M. M. Daadi, Z. Li, A. Arac, B. A. Grueter, M. Sofilos, R. C. Malenka, J. C. Wu, and G. K. Steinberg, "Molecular and Magnetic Resonance Imaging of Human Embryonic Stem Cell-Derived Neural Stem Cell Grafts in Ischemic Rat Brain," Mol Ther 17, 1282-1291 (2009).
7. H. H. Hensley, N. A. Roder, S. W. O'Brien, L. E. Bickel, F. Xiao, S. Litwin, and D. C. Connolly, "Combined In Vivo Molecular and Anatomic Imaging for Detection of Ovarian Carcinoma-Associated Protease Activity and Integrin Expression in Mice," Neoplasia 14, 451-IN452 (2012).
8. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, "Tomographic x-ray–guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints," Journal of Biomedical Optics 13, 044006-044006 (2008).
9. X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, "Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging," Review of Scientific Instruments 81, 054304-054308 (2010).
10. X. L. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. S. Hu, and J. Bai, "A Combined Fluorescence and Microcomputed Tomography System for Small Animal Imaging," Ieee T Bio-Med Eng 57, 2876-2883 (2010).
11. J. T. Liu, Y. B. Wang, X. C. Qu, X. S. Li, X. P. Ma, R. Q. Han, Z. H. Hu, X. L. Chen, D. D. Sun, R. Q. Zhang, D. F. Chen, D. Chen, X. Y. Chen, J. M. Liang, F. Cao, and J. Tian, "In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models," Optics Express 18, 13102-13113 (2010).